Cape Chestnut oil was processed to biodiesel through transesterification. Cape Chestnut kennels are reported to have oil content of 60% - 63% [1]. Properties of biodiesel were determined and compared with those of die...Cape Chestnut oil was processed to biodiesel through transesterification. Cape Chestnut kennels are reported to have oil content of 60% - 63% [1]. Properties of biodiesel were determined and compared with those of diesel and engine tests done at a constant speed of 1500 RPM on the biodiesel blends to evaluate their performance and emissions characteristics. Performance evaluation was in terms of Brake Specific Fuel Consumption (BSFC), Brake Horse Power (BHP) and Brake Thermal Efficiency (ETE). The engine was initially run on diesel to establish the reference characteristics before running on biodiesel blends. The biodiesel was blended with diesel volumetrically to 80% (B80), 50% (B50), 20% (B20) and 5% (B5) the percentage being the volume of biodiesel in the blended fuel. Diesel fuel had the lowest BSFC followed by B5 whose BSFC was 7.3% higher than that of diesel. BTE for B100 was lower than that of diesel by 20.3% while that of B5 was 7.6% lower. Concentration of SO2 in B100 was 92.7% lower than that of diesel fuel while that of B20 was 24.7% lower. NO and NO2 concentrations for B100 were around 15% higher than that of diesel. Particulate matter of less than 10 μm diameter (PM10) for diesel was found to be 72% of the total collected from all the test fuels as compared to that of biodiesel blends at 28%. The study concluded that Cape Chestnut biodiesel blends containing up to 20% biodiesel can be used in an unmodified diesel engine since their performance and emission characteristics were very similar to that of diesel but with reduced toxic gas emissions therefore friendly to the environment.展开更多
Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for tr...Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for train system designers to choose proper dimensions for and optimize train's subsystems. This paper presents a modular tool for the prediction of train braking performance, with a par- ticular attention to the accurate prediction of stopping distances. The tool takes into account different loading and operating conditions, in order to verify the safety require- ments prescribed by European technical specifications for interoperability of high-speed trains and the corresponding EN regulations. The numerical results given by the tool were verified and validated by comparison with experimental data, considering as benchmark case an Ansaldo EMU V250 train--a European high-speed train--currently developed for Belgium and Netherlands high-speed lines, on which technical information and experimental data directly recorded during the preliminary tests were available. An accurate identification of the influence of the braking pad friction factor on braking performances allowed obtaining reliable results.展开更多
The coefficient of friction(COF)is one of the most important parameters to evaluate the performance of a brake system.To design proper brake systems,it is important to know the COF when estimating the brake force and ...The coefficient of friction(COF)is one of the most important parameters to evaluate the performance of a brake system.To design proper brake systems,it is important to know the COF when estimating the brake force and resulting torque.It is challenging to simulate the COF since friction in disc brakes is a complex phenomenon that depends on several parameters such as sliding velocity,contact pressure,materials,and temperatures,etc.There is a lack of studies found in the literature focusing on simulation of the COF for a full brake system based on tribometer material characterization.The aim of this work is therefore to investigate the possibility to use a finite element analysis(FEA)approach combined with a COF pv-map to compute the global COF of a disc brake system.The local COF is determined from a pv-map for each local sliding velocity and contact pressure determined by the FEA.Knowing the local COF,the braking force of the entire brake system and the global COF can be evaluated.Results obtained by the simulation are compared with dyno bench test of the same brake system to investigate the validity of the simulation approach.Results show that the simulation is perfectly in line with the experimental measurements in terms of in-stop COF development,but slightly higher with a positive offset for every braking.展开更多
A database for complete and quick knowledge of biodiesel was developed in Microsoft access linked with interactive interfaced of Visual Basic which contains various information such as biodiesel properties,engine perf...A database for complete and quick knowledge of biodiesel was developed in Microsoft access linked with interactive interfaced of Visual Basic which contains various information such as biodiesel properties,engine performance parameters and emission characteristics.The comparisons of fuel properties among the biodiesel,its blends and engine performance parameters are one of the most attractive features of the developed database.Based on the data collected from the developed database,the analysis of variance(ANOVA)was carried out to know the effect of fuel properties on engine performance parameters.The fuel properties such as a change in calorific value and viscosity with respect to diesel were found to be significant at 5%level with brake power(BP)and brake specific fuel consumption(BSFC).However,flash point and density were found to be insignificant.Therefore,mathematical models were developed for(i)change in BP and(ii)BSFC based on the significant fuel properties.The model efficiency for BP and BSFC were found to be 92%and 91%respectively.The RMSE values were also calculated from the predicted value and found to be 1.85 and 5.45 for BP and BSFC respectively.From the above statistical facts,it is revealed that the developed mathematical models can be used to predict the change in BP and BSFC.Further,it is also expected that the developed database shall be expedient for researchers and engineers to locate various information related to biodiesel.展开更多
文摘Cape Chestnut oil was processed to biodiesel through transesterification. Cape Chestnut kennels are reported to have oil content of 60% - 63% [1]. Properties of biodiesel were determined and compared with those of diesel and engine tests done at a constant speed of 1500 RPM on the biodiesel blends to evaluate their performance and emissions characteristics. Performance evaluation was in terms of Brake Specific Fuel Consumption (BSFC), Brake Horse Power (BHP) and Brake Thermal Efficiency (ETE). The engine was initially run on diesel to establish the reference characteristics before running on biodiesel blends. The biodiesel was blended with diesel volumetrically to 80% (B80), 50% (B50), 20% (B20) and 5% (B5) the percentage being the volume of biodiesel in the blended fuel. Diesel fuel had the lowest BSFC followed by B5 whose BSFC was 7.3% higher than that of diesel. BTE for B100 was lower than that of diesel by 20.3% while that of B5 was 7.6% lower. Concentration of SO2 in B100 was 92.7% lower than that of diesel fuel while that of B20 was 24.7% lower. NO and NO2 concentrations for B100 were around 15% higher than that of diesel. Particulate matter of less than 10 μm diameter (PM10) for diesel was found to be 72% of the total collected from all the test fuels as compared to that of biodiesel blends at 28%. The study concluded that Cape Chestnut biodiesel blends containing up to 20% biodiesel can be used in an unmodified diesel engine since their performance and emission characteristics were very similar to that of diesel but with reduced toxic gas emissions therefore friendly to the environment.
文摘Train braking performance is important for the safety and reliability of railway systems. The availability of a tool that allows evaluating such performance on the basis of the main train features can be useful for train system designers to choose proper dimensions for and optimize train's subsystems. This paper presents a modular tool for the prediction of train braking performance, with a par- ticular attention to the accurate prediction of stopping distances. The tool takes into account different loading and operating conditions, in order to verify the safety require- ments prescribed by European technical specifications for interoperability of high-speed trains and the corresponding EN regulations. The numerical results given by the tool were verified and validated by comparison with experimental data, considering as benchmark case an Ansaldo EMU V250 train--a European high-speed train--currently developed for Belgium and Netherlands high-speed lines, on which technical information and experimental data directly recorded during the preliminary tests were available. An accurate identification of the influence of the braking pad friction factor on braking performances allowed obtaining reliable results.
文摘The coefficient of friction(COF)is one of the most important parameters to evaluate the performance of a brake system.To design proper brake systems,it is important to know the COF when estimating the brake force and resulting torque.It is challenging to simulate the COF since friction in disc brakes is a complex phenomenon that depends on several parameters such as sliding velocity,contact pressure,materials,and temperatures,etc.There is a lack of studies found in the literature focusing on simulation of the COF for a full brake system based on tribometer material characterization.The aim of this work is therefore to investigate the possibility to use a finite element analysis(FEA)approach combined with a COF pv-map to compute the global COF of a disc brake system.The local COF is determined from a pv-map for each local sliding velocity and contact pressure determined by the FEA.Knowing the local COF,the braking force of the entire brake system and the global COF can be evaluated.Results obtained by the simulation are compared with dyno bench test of the same brake system to investigate the validity of the simulation approach.Results show that the simulation is perfectly in line with the experimental measurements in terms of in-stop COF development,but slightly higher with a positive offset for every braking.
文摘A database for complete and quick knowledge of biodiesel was developed in Microsoft access linked with interactive interfaced of Visual Basic which contains various information such as biodiesel properties,engine performance parameters and emission characteristics.The comparisons of fuel properties among the biodiesel,its blends and engine performance parameters are one of the most attractive features of the developed database.Based on the data collected from the developed database,the analysis of variance(ANOVA)was carried out to know the effect of fuel properties on engine performance parameters.The fuel properties such as a change in calorific value and viscosity with respect to diesel were found to be significant at 5%level with brake power(BP)and brake specific fuel consumption(BSFC).However,flash point and density were found to be insignificant.Therefore,mathematical models were developed for(i)change in BP and(ii)BSFC based on the significant fuel properties.The model efficiency for BP and BSFC were found to be 92%and 91%respectively.The RMSE values were also calculated from the predicted value and found to be 1.85 and 5.45 for BP and BSFC respectively.From the above statistical facts,it is revealed that the developed mathematical models can be used to predict the change in BP and BSFC.Further,it is also expected that the developed database shall be expedient for researchers and engineers to locate various information related to biodiesel.