Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite ne...Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.展开更多
This Special Issue of the Journal of Rock Mechanics and GeotechnicalEngineering (JRMGE) contains 13 papers prepared by internationalexperts on various general topics in geomechanics, rockmechanics and geotechnical e...This Special Issue of the Journal of Rock Mechanics and GeotechnicalEngineering (JRMGE) contains 13 papers prepared by internationalexperts on various general topics in geomechanics, rockmechanics and geotechnical engineering. It represents a usefulmix of theoretical developments, testing and practical applications.We present in the following brief details in the papers, alphabeticallyin accordance with the last name of the first author.Barla presents a review of tunneling techniques with emphasison the full-face method combining full-face excavation and facereinforcement by means of fiber-glass elements with a yieldcontrolsupport. This method has been used successfully in difficultgeologic conditions, and for a wide spectrum of ground situations.The validation of the method with respect to the Saint Martin LaPorte access adit along the LyoneTurin Base tunnel experiencingseverely squeezing conditions during excavation is also includedin the paper. The numerical modeling with consideration of therock mass time-dependent behavior showed a satisfactory agreementwith monitoring results.展开更多
The definition and functions of parametric design were introduced. According to the practical condition of mechanical engineering design, the necessity and feasibility of parametric design for complex mechanical engin...The definition and functions of parametric design were introduced. According to the practical condition of mechanical engineering design, the necessity and feasibility of parametric design for complex mechanical engineering design was analyzed. The related key technologies and methods were also discussed by a project example based on Inventor platform.展开更多
A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening...A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects: grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials.展开更多
In order to optimise the safety of underground rock engineering construction and the long-term security of the resultant facilities, it is necessary to have a knowledge of the likely hazards. These risks or hazards fa...In order to optimise the safety of underground rock engineering construction and the long-term security of the resultant facilities, it is necessary to have a knowledge of the likely hazards. These risks or hazards fall into the four categories of 'known beforehand and relatively easily addressed', 'known beforehand and not easily addressed', 'not known beforehand and relatively easily addressed', and 'not known beforehand and not easily addressed'. This paper describes how these four types of hazard can be incorporated into a design methodology approach, including the process by which the relevant mechanical rock mass parameters can be recognised for modelling and hence predictive purposes. In particular, there is emphasis on the fact that information and judgement are the keys to safety——whether the hazards are known or unknown before construction proceeds.展开更多
A mathematical model has been established for the research on scissor elevator for ship passenger stairs.The kinematical and kinetic simulation analyses were carried out with MATLAB/Simulink.The relative kinetic relat...A mathematical model has been established for the research on scissor elevator for ship passenger stairs.The kinematical and kinetic simulation analyses were carried out with MATLAB/Simulink.The relative kinetic relation between hydraulic cylinder and other parts,as well as its rules of change has been found.A 3-D model of ship scissor elevator was established with Pro/E.The design of the mechanism was optimized in Pro/MECHANICA based on the findings from simulation analysis.Practice has proved that the design is scientific and reasonable and could serve as the theoretical guidance and reference for the design of scissor mechanism of other uses.展开更多
This paper proposes an integration mechanism to help the owners and designers to integrate sustainability issues into design process, communicate with stakeholders and achieve consensus. Literature concerning engineer...This paper proposes an integration mechanism to help the owners and designers to integrate sustainability issues into design process, communicate with stakeholders and achieve consensus. Literature concerning engineering design, decision making and environment assessment were reviewed. Sustainability disputes in construction projects were analyzed and owners and designers were interviewed to understand the evolvement of these issues. Key success factors of other successful integration projects were also referenced. An integration mechanism including procedures was established along with traditional design process. Four integration steps were developed: organize integration team, propose integration issues, determine acceptance criteria, and evaluate alternatives; and four integration dimensions were also identified: appeals, decision making and execution, stakeholders, and experts. A matrix was formed by the four integration steps and four dimensions. A rigor index was proposed to measure the quality of the integration process. Finally, the mechanism was tested on a construction project with sustainability controversy to check its validity. The study results show that the integration mechanism can help incorporate sustainability issues and achieve consensus if followed rigorously. The integration matrix systematically examines the eight key integration factors under the four dimensions. The rigor index can explain the quality in integrating sustainability issues into engineering design. The mechanism provides a useful tool for the owners and designers to cope with the sustainability decision making difficulties.展开更多
In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and pro...In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.展开更多
在新工科背景下,培养学生面向工程问题的创新设计能力是机械专业人才培养的关键。文中以“CDIO(Conceive-Design-Implement-Operate)创新设计”项目式实践课程为依托,将TRIZ(Theroy of Inventive Problem Solvling)创新方法和设计流程...在新工科背景下,培养学生面向工程问题的创新设计能力是机械专业人才培养的关键。文中以“CDIO(Conceive-Design-Implement-Operate)创新设计”项目式实践课程为依托,将TRIZ(Theroy of Inventive Problem Solvling)创新方法和设计流程引入到大学生机械创新设计实训教学环节中。学生通过对TRIZ理论的基本原理和设计流程的学习,以具体项目为依托,运用TRIZ理论开展项目问题分析,解决设计过程中存在的技术冲突与矛盾问题,使学生在创新设计过程中有章可循,为本科生机械创新设计能力的提升提供借鉴思路。展开更多
基金supported by the International Collaboration Program of Jilin Provincial Department of Science and Technology,China(20230402051GH)the National Natural Science Foundation of China(51932003,51902050)+2 种基金the Open Project Program of Key Laboratory of Preparation and Application of Environmental friendly Materials(Jilin Normal University)of Ministry of China(2021006)the Fundamental Research Funds for the Central Universities JLU“Double-First Class”Discipline for Materials Science&Engineering。
文摘Owning various crystal structures and high theoretical capacity,metal tellurides are emerging as promising electrode materials for high-performance metal-ion batteries(MBs).Since metal telluride-based MBs are quite new,fundamental issues raise regarding the energy storage mechanism and other aspects affecting electrochemical performance.Severe volume expansion,low intrinsic conductivity and slow ion diffusion kinetics jeopardize the performance of metal tellurides,so that rational design and engineering are crucial to circumvent these disadvantages.Herein,this review provides an in-depth discussion of recent investigations and progresses of metal tellurides,beginning with a critical discussion on the energy storage mechanisms of metal tellurides in various MBs.In the following,recent design and engineering strategies of metal tellurides,including morphology engineering,compositing,defect engineering and heterostructure construction,for high-performance MBs are summarized.The primary focus is to present a comprehensive understanding of the structural evolution based on the mechanism and corresponding effects of dimension control,composition,electron configuration and structural complexity on the electrochemical performance.In closing,outlooks and prospects for future development of metal tellurides are proposed.This work also highlights the promising directions of design and engineering strategies of metal tellurides with high performance and low cost.
文摘This Special Issue of the Journal of Rock Mechanics and GeotechnicalEngineering (JRMGE) contains 13 papers prepared by internationalexperts on various general topics in geomechanics, rockmechanics and geotechnical engineering. It represents a usefulmix of theoretical developments, testing and practical applications.We present in the following brief details in the papers, alphabeticallyin accordance with the last name of the first author.Barla presents a review of tunneling techniques with emphasison the full-face method combining full-face excavation and facereinforcement by means of fiber-glass elements with a yieldcontrolsupport. This method has been used successfully in difficultgeologic conditions, and for a wide spectrum of ground situations.The validation of the method with respect to the Saint Martin LaPorte access adit along the LyoneTurin Base tunnel experiencingseverely squeezing conditions during excavation is also includedin the paper. The numerical modeling with consideration of therock mass time-dependent behavior showed a satisfactory agreementwith monitoring results.
文摘The definition and functions of parametric design were introduced. According to the practical condition of mechanical engineering design, the necessity and feasibility of parametric design for complex mechanical engineering design was analyzed. The related key technologies and methods were also discussed by a project example based on Inventor platform.
基金the National Natural Science Foundation of China for the financial support by the grant 50171018 and 59771015, and Education Ministry of China for an outstanding teacher research fund to this study. Some student work
文摘A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects: grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials.
文摘In order to optimise the safety of underground rock engineering construction and the long-term security of the resultant facilities, it is necessary to have a knowledge of the likely hazards. These risks or hazards fall into the four categories of 'known beforehand and relatively easily addressed', 'known beforehand and not easily addressed', 'not known beforehand and relatively easily addressed', and 'not known beforehand and not easily addressed'. This paper describes how these four types of hazard can be incorporated into a design methodology approach, including the process by which the relevant mechanical rock mass parameters can be recognised for modelling and hence predictive purposes. In particular, there is emphasis on the fact that information and judgement are the keys to safety——whether the hazards are known or unknown before construction proceeds.
文摘A mathematical model has been established for the research on scissor elevator for ship passenger stairs.The kinematical and kinetic simulation analyses were carried out with MATLAB/Simulink.The relative kinetic relation between hydraulic cylinder and other parts,as well as its rules of change has been found.A 3-D model of ship scissor elevator was established with Pro/E.The design of the mechanism was optimized in Pro/MECHANICA based on the findings from simulation analysis.Practice has proved that the design is scientific and reasonable and could serve as the theoretical guidance and reference for the design of scissor mechanism of other uses.
文摘This paper proposes an integration mechanism to help the owners and designers to integrate sustainability issues into design process, communicate with stakeholders and achieve consensus. Literature concerning engineering design, decision making and environment assessment were reviewed. Sustainability disputes in construction projects were analyzed and owners and designers were interviewed to understand the evolvement of these issues. Key success factors of other successful integration projects were also referenced. An integration mechanism including procedures was established along with traditional design process. Four integration steps were developed: organize integration team, propose integration issues, determine acceptance criteria, and evaluate alternatives; and four integration dimensions were also identified: appeals, decision making and execution, stakeholders, and experts. A matrix was formed by the four integration steps and four dimensions. A rigor index was proposed to measure the quality of the integration process. Finally, the mechanism was tested on a construction project with sustainability controversy to check its validity. The study results show that the integration mechanism can help incorporate sustainability issues and achieve consensus if followed rigorously. The integration matrix systematically examines the eight key integration factors under the four dimensions. The rigor index can explain the quality in integrating sustainability issues into engineering design. The mechanism provides a useful tool for the owners and designers to cope with the sustainability decision making difficulties.
文摘In order to meet the rapid needs of processing square hole in mechanical equipment, the paper expounds the square hole processing method: planetary wheel method, and analyze the principle of tooling structure and process with computer graphics parameters design. The results that, as long as the appropriate parameters, using the above method not only can punch the square hole, can also be processed triangle, the five angle and hexagonal regular polygon holes. The square hole processing method can provide theoretical basis and engineering reliable reference for related engineering and technical personnel.
文摘在新工科背景下,培养学生面向工程问题的创新设计能力是机械专业人才培养的关键。文中以“CDIO(Conceive-Design-Implement-Operate)创新设计”项目式实践课程为依托,将TRIZ(Theroy of Inventive Problem Solvling)创新方法和设计流程引入到大学生机械创新设计实训教学环节中。学生通过对TRIZ理论的基本原理和设计流程的学习,以具体项目为依托,运用TRIZ理论开展项目问题分析,解决设计过程中存在的技术冲突与矛盾问题,使学生在创新设计过程中有章可循,为本科生机械创新设计能力的提升提供借鉴思路。