In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA f...In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA fibers along with other local ingredients,such as fly ash,cement and sand.In addition to the economic analysis of ECC,the four-point bending test and the optical microscope are employed to investigate the deflection capacity of ECC,its crack width and the occurrence of the self-healing phenomenon.The experimental results suggest that ECC made with domestic ingredients exhibits larger deformability and the average crack width is controlled around 60 μm.Furthermore,the self-healing behavior is observed in cracks of the specimens after cycles of wet and dry curing.The economic analysis shows that the cost of ECC can be greatly reduced via employing domestic PVA fibers.It is,therefore,feasible to produce low cost ECC material employing domestic PVA fibers,while simultaneously retaining high material ductility.展开更多
In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility ...In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility on connection failure modes and structural performance was investigated via the pushout test of stud/ECC connection, the pullout test of two-dimensional anchor bolt/ECC connection and the finite element modeling (FEM). The experimental results suggest that the micromechanically designed ECC with a tensile ductility 300 times that of normal concrete switches the brittle fracture failure mode to a ductile one in steel connection zones. This modification in material behavior leads to higher load carrying capacity and structural ductility, which is also confirmed in FEM investigation. The enhancement in structural response through material ductility engineering is expected to be applicable to a wide range of engineering structures where steel and concrete come into contact.展开更多
基金The National Natural Science Foundation of China (No.51008071,51278097)the Natural Science Foundation of Jiangsu Province(No.BK2010413)+2 种基金Teaching & Research Excellence Grant for Young Faculty Member at Southeast Universitythe Program for Special Talents in Six Major Fields of Jiangsu Province(No.2011-JZ-011)the Scientific Research Innovation Project for College Graduates in Jiangsu Province(No.CXLX_0136)
文摘In order to reduce the cost of high performance polyvinyl alcohol(PVA) fiber reinforced cementitious material(called engineered cementitious composites,ECC),a ductile ECC material is developed using domestic PVA fibers along with other local ingredients,such as fly ash,cement and sand.In addition to the economic analysis of ECC,the four-point bending test and the optical microscope are employed to investigate the deflection capacity of ECC,its crack width and the occurrence of the self-healing phenomenon.The experimental results suggest that ECC made with domestic ingredients exhibits larger deformability and the average crack width is controlled around 60 μm.Furthermore,the self-healing behavior is observed in cracks of the specimens after cycles of wet and dry curing.The economic analysis shows that the cost of ECC can be greatly reduced via employing domestic PVA fibers.It is,therefore,feasible to produce low cost ECC material employing domestic PVA fibers,while simultaneously retaining high material ductility.
基金The National Natural Science Foundation of China(No. 51008071)the Natural Science Foundation fo Jiangsu Province(No. BK2010413)Teaching & Research Excellence Grant for Young Faculty Members at Southeast University,the US National Science Foundation (No. CMS-0223971,CMS-0329416)
文摘In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility on connection failure modes and structural performance was investigated via the pushout test of stud/ECC connection, the pullout test of two-dimensional anchor bolt/ECC connection and the finite element modeling (FEM). The experimental results suggest that the micromechanically designed ECC with a tensile ductility 300 times that of normal concrete switches the brittle fracture failure mode to a ductile one in steel connection zones. This modification in material behavior leads to higher load carrying capacity and structural ductility, which is also confirmed in FEM investigation. The enhancement in structural response through material ductility engineering is expected to be applicable to a wide range of engineering structures where steel and concrete come into contact.