The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and...The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and self-organization (Tazaka, 1998;Tsuda, 1998; Kishida, 2000). From construction to abandonmentof RME, the RMES will experience four stages, i.e. initial phase,development phase, declining phase and failure phase. In thiscircumstance, the RMES boundary conditions, structural safetyand surrounding environments are varied at each phase, so arethe evolution characteristics and disasters (Wang et al., 2014).展开更多
Aquatic viruses are naturally present in the aquatic environment and the number of viruses is staggering.Various multicellular organisms in aquatic ecosystems may be infected,cross-species transmitted,manipulated,and ...Aquatic viruses are naturally present in the aquatic environment and the number of viruses is staggering.Various multicellular organisms in aquatic ecosystems may be infected,cross-species transmitted,manipulated,and killed by aquatic viruses,which can lead to cascading ecological effects.The viruses in unicellular aquatic organisms can alter interactions between host individuals,and are essential in effecting or maintaining the dynamics of aquatic microbial communities,horizontal gene transfer,biodiversity,and modulating ecological processes globally.Meanwhile,hosts also impact viral abundance and diversity.Microbial diversity drives multifunctionality in ecosystems,while viruses shape complex microbial communities and are crucial for ecosystem functioning.This review focuses on molecular,genetic,evolutionary,and ecosystemic advances related to emerging and reemerging aquatic viruses,presents the contexts,novel tools,and investigative approaches pertaining to the study of aquatic virology,and discusses the mechanisms by which viruses affect aquatic ecosystems.The paper provides an efficient and broadly-based blueprint for improving understanding of aquatic viruses.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.51274110,51304108,U1361211)
文摘The rock mass engineering system (RMES) basically consists ofrock mass engineering (RME), water system and surroundingecological environments, etc. The RMES is characterized by nonlinearity,occurrence of chaos and self-organization (Tazaka, 1998;Tsuda, 1998; Kishida, 2000). From construction to abandonmentof RME, the RMES will experience four stages, i.e. initial phase,development phase, declining phase and failure phase. In thiscircumstance, the RMES boundary conditions, structural safetyand surrounding environments are varied at each phase, so arethe evolution characteristics and disasters (Wang et al., 2014).
基金supported by the National Key R&D Plan of the Ministry of Science and Technology,China(2018YFA0903101,2018YFD0900302)the Key Program of Frontier Sciences of the Chinese Academy of Sciences(KJZD-SW-L11).
文摘Aquatic viruses are naturally present in the aquatic environment and the number of viruses is staggering.Various multicellular organisms in aquatic ecosystems may be infected,cross-species transmitted,manipulated,and killed by aquatic viruses,which can lead to cascading ecological effects.The viruses in unicellular aquatic organisms can alter interactions between host individuals,and are essential in effecting or maintaining the dynamics of aquatic microbial communities,horizontal gene transfer,biodiversity,and modulating ecological processes globally.Meanwhile,hosts also impact viral abundance and diversity.Microbial diversity drives multifunctionality in ecosystems,while viruses shape complex microbial communities and are crucial for ecosystem functioning.This review focuses on molecular,genetic,evolutionary,and ecosystemic advances related to emerging and reemerging aquatic viruses,presents the contexts,novel tools,and investigative approaches pertaining to the study of aquatic virology,and discusses the mechanisms by which viruses affect aquatic ecosystems.The paper provides an efficient and broadly-based blueprint for improving understanding of aquatic viruses.