The purpose of this study was to fabricate decelluarized valve scaffold modified with polyethylene glycol nanoparticles loaded with transforming growth factor-β1(TGF-β1),by which to improve the extracellular matri...The purpose of this study was to fabricate decelluarized valve scaffold modified with polyethylene glycol nanoparticles loaded with transforming growth factor-β1(TGF-β1),by which to improve the extracellular matrix microenvironment for heart valve tissue engineering in vitro.Polyethylene glycol nanoparticles were obtained by an emulsion-crosslinking method,and their morphology was observed under a scanning electron microscope.Decelluarized valve scaffolds,prepared by using trypsinase and TritonX-100,were modified with nanoparticles by carbodiimide,and then TGF-β1 was loaded into them by adsorption.The TGF-β1 delivery of the fabricated scaffold was measured by asing enzyme-linked immunosorbent assay.Whether unseeded or reseeded with myofibroblast from rats,the morphologic,biochemical and biomechanical characteristics of hybrid scaffolds were tested and compared with decelluarized scaffolds under the same conditions.The enzyme-linked immunosorbent assay revealed a typical delivery of nanoparticles.The morphologic observations and biological data analysis indicated that fabricated scaffolds possessed advantageous biocompatibility and biomechanical property beyond decelluarized scaffolds.Altogether this study proved that it was feasible to fabricate the hybrid scaffold and effective to improve extracellular matrix microenvironment,which is beneficial for an application in heart valve tissue engineering.展开更多
Currently-used mechanical and biological heart valve prostheses have a satisfactory short-term performance, but may exhibit several major drawbacks on the long-term. Mechanical prostheses, based on carbon, metallic an...Currently-used mechanical and biological heart valve prostheses have a satisfactory short-term performance, but may exhibit several major drawbacks on the long-term. Mechanical prostheses, based on carbon, metallic and polymeric components, require permanent anticoagulation treatment, and their usage often leads to adverse reactions, e.g. thromboembolic complications and endocarditis. In recent years, there is a need for a heart valve prosthesis that can grow, repair and remodel. The concept of tissue engineering offers good prospects into the development of such a device. An ideal scaffold should mimic the structural and purposeful profile of materials found in the natural extracellular matrix (ECM) architecture. The goal of this study was to develop cellulose acetate scaffolds (CA) for valve tissue regeneration. After their thorough physicochemical and biological characterization, a biofunctionalization process was made to increase the cell proliferation. Especially, the surface of scaffolds was amplified with functional molecules, such as RGD peptides (Arg-Gly-Asp) and YIGSRG laminins (Tyrosine-Isoleucine-Glycine-Serine-Arginine-Glycine) which immobilized through biotin-streptavidin bond, the strongest non-covalent bond in nature. Last step was to successfully coat an aortic metallic valve with CA biofunctionallized nanoscaffolds and cultivate cells in order to create an anatomical structure comparable to the native valve. Promising results have been obtained with CA-based nanoscaffolds. We found that cells grown successfully on the biofunctionalized valve surface thereby scaffolds that resemble the native tissues, elaborated with bioactive factors such as RGD peptides and laminins not only make the valve’s surface biocompatible but also they could promote endothyliazation of cardiac valves causing an anti-coagulant effect展开更多
The aim of this study was to fabricate biomatrix/polymer hybrid scaffolds using an electrospinning technique. Then tissue engineered heart valves were engineered by seeding mesenchymal stromal cells (MSCs) onto the ...The aim of this study was to fabricate biomatrix/polymer hybrid scaffolds using an electrospinning technique. Then tissue engineered heart valves were engineered by seeding mesenchymal stromal cells (MSCs) onto the scaffolds. The effects of the hybrid scaffolds on the proliferation of seed cells, formation of extracellular matrix and mechanical properties of tissue engineered heart valves were investigated. MSCs were obtained from rats. Porcine aortic heart valves were decellularized, coated with poly(3-hydroxybutyrate-co-4-hydroxybutyrate) using an electrospinning technique, and reseeded and cultured over a time period of 14 days. In control group, the decellularized valve scaffolds were reseeded and cultured over an equivalent time period. Specimens of each group were examined histologically (hematoxylin-eosin [HE] staining, immunohistostaining, and scanning electron microscopy), biochemically (DNA and 4-hydroxyproline) and mechanically. The results showed that recellularization was comparable to the specimens of hybrid scaffolds and controls. The specimens of hybrid scaffolds and controls revealed comparable amounts of cell mass and 4-hydroxyproline (P〉0.05). However, the specimens of hybrid scaffolds showed a significant increase in mechanical strength, compared to the controls (P〈0.05). This study demonstrated the superiority of the hybrid scaffolds to increase the mechanical strength of tissue engineered heart valves. And compared to the decellularized valve scaffolds, the hybrid scaffolds showed similar effects on the proliferation of MSCs and formation of extracellular matrix. It was believed that the hybrid scaffolds could be used for the construction of tissue engineered heart valves.展开更多
In situ regeneration is a promising strategy for constructing tissue engineering heart valves(TEHVs).Currently,the decellularized heart valve(DHV)is extensively employed as a TEHV scaffold.Nevertheless,DHV exhibits li...In situ regeneration is a promising strategy for constructing tissue engineering heart valves(TEHVs).Currently,the decellularized heart valve(DHV)is extensively employed as a TEHV scaffold.Nevertheless,DHV exhibits limited blood compatibility and notable difficulties in endothelialization,resulting in thrombosis and graft failure.The red blood cell membrane(RBCM)exhibits excellent biocompatibility and prolonged circulation stability and is extensively applied in the camouflage of nanoparticles for drug delivery;however,there is no report on its application for large-scale modification of decellularized extracellular matrix(ECM).For the first time,we utilized a layer-by-layer assembling strategy to immobilize RBCM on the surface of DHV and construct an innovative TEHV scaffold.Our findings demonstrated that the scaffold significantly improved the hemocompatibility of DHV by effectively preventing plasma protein adsorption,activated platelet adhesion,and erythrocyte aggregation,and induced macrophage polarization toward the M2 phenotype in vitro.Moreover,RBCM modification significantly enhanced the mechanical properties and enzymatic stability of DHV.The rat models of subcutaneous embedding and abdominal aorta implantation showed that the scaffold regulated the polarization of macrophages into the anti-inflammatory and pro-modeling M2 phenotype and promoted endothelialization and ECM remodeling in the early stage without thrombosis and calcification.The novel TEHV exhibits excellent performance and can overcome the limitations of commonly used clinical prostheses.展开更多
Objectives To investigate the effects of epoxy chloropropan on the expression of matrix metalloproteinases-9 (MMP-9)in creating tissue engineered heart valves(TEHV),on the tissue structures of TEHV,and to study th...Objectives To investigate the effects of epoxy chloropropan on the expression of matrix metalloproteinases-9 (MMP-9)in creating tissue engineered heart valves(TEHV),on the tissue structures of TEHV,and to study the effects of epoxy chloropropan on the calcification of TEHV.Methods The porcine aortic valve leaflets were digested and decellularized by using detergent and trypsin.Those treated with 0.3% glutaraldehyde for 48 hours were the control group;those treated with 3% epoxy choloropropan for 24 hours were the experimental group.The cultured human bone marrow mesenchymal stem cells(hBMSCs)were seeded onto the decellularized scaffolds of TEHV.The histological studies were done with pathological sections and scanning electron microscopy and reverse transcriptase-polymerase chain reaction(RT-PCR)were used to detect the expression of MMP-9.Results In the experimental group.the histology showed that the BMSCs grew well into the pores and formed a confluent layer in decellularized scaffolds;RT-PCR indicated significantly attenuated expressions of MMP-9,compared with the control(P〈0.05).Conclusion The decellularized porcine aortic valves treated with 3% epoxy chloropropan may inhibit the expression of MMP-9;therefore epoxy chloropropan may prevent the calcification of tissue engineered heart valves.展开更多
Interstitial Cajal-like cells are a distinct type of interstitial cell with a wide distribution in mammalian organs and tissues,and have been given the name"telocytes".Recent studies have demonstrated the po...Interstitial Cajal-like cells are a distinct type of interstitial cell with a wide distribution in mammalian organs and tissues,and have been given the name"telocytes".Recent studies have demonstrated the potential roles of telocytes in heart development,renewal,and repair.However,further research on the functions of telocytes is limited by the complicated in vivo environment.This study was designed to construct engineered heart tissue(EHT)as a three-dimensional model in vitro to better understand the role of telocytes in the architectural organization of the myocardium.EHTs were constructed by seeding neonatal cardiomyocytes in collagen/Matrigel scaffolds followed by culture under persistent static stretch.Telocytes in EHTs were identified by histology,toluidine blue staining,immunofluorescence,and transmission electron microscopy.The results from histology and toluidine blue staining demonstrated widespread putative telocytes with compact toluidine blue-stained nuclei,which were located around cardiomyocytes.Prolongations from the cell bodies showed a characteristic dichotomous branching pattern and formed networks in EHTs.Immunofluorescence revealed positive staining of telocytes for CD34 and vimentin with typical moniliform prolongations.A series of electron microscopy images further showed that typical telocytes embraced the cardiomyocytes with their long prolongations and exhibited a marked appearance of nursing cardiomyocytes during the construction of EHTs.This finding highlights the great importance of telocytes in the architectural organization of EHTs.It also suggests that EHT is an appropriate physical and pathological model system in vitro to study the roles of telocytes during heart development and regeneration.展开更多
The cell adhesive properties of decellularized valve scaffolds were promoted by immobilization of valve scaffold with arginine-glycine-aspartic acid (RGD)-containing peptides. Porcine aortic valves were decellulariz...The cell adhesive properties of decellularized valve scaffolds were promoted by immobilization of valve scaffold with arginine-glycine-aspartic acid (RGD)-containing peptides. Porcine aortic valves were decellularized with trypsin/EDTA, and detergent Triton X-100. With the help of a coupling reagent Sulfo-LC-SPDP, the valve scaffolds were immobilized with glycine-arginine-glycine-aspartic acid-serine-proline-cysteine (GRGDSPC) peptide. X-ray photoelectron spectroscopy (XPS) was used for surface structure analysis. Myofibroblasts harvested from rats were seeded onto the valve scaffolds. Cell count by using microscopy and modified MTT assay were performed to assess cell adhesion. Based on the spectra of XPS, the conjugation of GRGDSPC peptide with decellularized valve scaffolds was confirmed. Both cell count and MTT assay showed that myofibroblasts were much easier to adhere to the modified valve scaffolds, which was also confirmed histologically. Our findings suggest that it is feasible to immobilize RGD-containing peptides onto decellularized valve scaffolds. And the technique can effectively promote cell adhesion, which is beneficial for in vitro tissue engineering of heart valves.展开更多
Porcine aortic valves were decellularized with trypsinase/EDTA and Triton-100. With the help of a coupling reagent Sulfo-LC-SPDP, the biological valve scaffolds were immobilized with one of RGD (arginine-glycine-aspa...Porcine aortic valves were decellularized with trypsinase/EDTA and Triton-100. With the help of a coupling reagent Sulfo-LC-SPDP, the biological valve scaffolds were immobilized with one of RGD (arginine-glycine-aspartic acid) containing peptides, called GRGDSPC peptide. Myofibroblasts harvested from rats were seeded onto them. Based on the spectra of X-ray photoelectron spectroscopy, we could find conjugation of GRGDSPC peptide and the scaffolds. Cell count by both microscopy and MTT assay showed that myofibroblasts were easier to adhere to the modified scaffolds. It is proved that it is feasible to immobilize RGD peptides onto decellularized valve scaffolds, and effective to promote cell adhesion, which is beneficial for constructing tissue engineering heart valves in vitro.展开更多
基金supported by grants from the National Natural Sciences Foundation of China (No. 30571839, No. 30600608,No. 30872540)the National High Technology Research and Development Program of China (863 Program) (No. 2009AA03Z420)
文摘The purpose of this study was to fabricate decelluarized valve scaffold modified with polyethylene glycol nanoparticles loaded with transforming growth factor-β1(TGF-β1),by which to improve the extracellular matrix microenvironment for heart valve tissue engineering in vitro.Polyethylene glycol nanoparticles were obtained by an emulsion-crosslinking method,and their morphology was observed under a scanning electron microscope.Decelluarized valve scaffolds,prepared by using trypsinase and TritonX-100,were modified with nanoparticles by carbodiimide,and then TGF-β1 was loaded into them by adsorption.The TGF-β1 delivery of the fabricated scaffold was measured by asing enzyme-linked immunosorbent assay.Whether unseeded or reseeded with myofibroblast from rats,the morphologic,biochemical and biomechanical characteristics of hybrid scaffolds were tested and compared with decelluarized scaffolds under the same conditions.The enzyme-linked immunosorbent assay revealed a typical delivery of nanoparticles.The morphologic observations and biological data analysis indicated that fabricated scaffolds possessed advantageous biocompatibility and biomechanical property beyond decelluarized scaffolds.Altogether this study proved that it was feasible to fabricate the hybrid scaffold and effective to improve extracellular matrix microenvironment,which is beneficial for an application in heart valve tissue engineering.
文摘Currently-used mechanical and biological heart valve prostheses have a satisfactory short-term performance, but may exhibit several major drawbacks on the long-term. Mechanical prostheses, based on carbon, metallic and polymeric components, require permanent anticoagulation treatment, and their usage often leads to adverse reactions, e.g. thromboembolic complications and endocarditis. In recent years, there is a need for a heart valve prosthesis that can grow, repair and remodel. The concept of tissue engineering offers good prospects into the development of such a device. An ideal scaffold should mimic the structural and purposeful profile of materials found in the natural extracellular matrix (ECM) architecture. The goal of this study was to develop cellulose acetate scaffolds (CA) for valve tissue regeneration. After their thorough physicochemical and biological characterization, a biofunctionalization process was made to increase the cell proliferation. Especially, the surface of scaffolds was amplified with functional molecules, such as RGD peptides (Arg-Gly-Asp) and YIGSRG laminins (Tyrosine-Isoleucine-Glycine-Serine-Arginine-Glycine) which immobilized through biotin-streptavidin bond, the strongest non-covalent bond in nature. Last step was to successfully coat an aortic metallic valve with CA biofunctionallized nanoscaffolds and cultivate cells in order to create an anatomical structure comparable to the native valve. Promising results have been obtained with CA-based nanoscaffolds. We found that cells grown successfully on the biofunctionalized valve surface thereby scaffolds that resemble the native tissues, elaborated with bioactive factors such as RGD peptides and laminins not only make the valve’s surface biocompatible but also they could promote endothyliazation of cardiac valves causing an anti-coagulant effect
基金supported by grants from National Natural Sciences Foundation of China (No.30571839,30600608 and 30872540)National High Technology Research and Development Program ("863" Program) of China (No.2009AA-03Z420)
文摘The aim of this study was to fabricate biomatrix/polymer hybrid scaffolds using an electrospinning technique. Then tissue engineered heart valves were engineered by seeding mesenchymal stromal cells (MSCs) onto the scaffolds. The effects of the hybrid scaffolds on the proliferation of seed cells, formation of extracellular matrix and mechanical properties of tissue engineered heart valves were investigated. MSCs were obtained from rats. Porcine aortic heart valves were decellularized, coated with poly(3-hydroxybutyrate-co-4-hydroxybutyrate) using an electrospinning technique, and reseeded and cultured over a time period of 14 days. In control group, the decellularized valve scaffolds were reseeded and cultured over an equivalent time period. Specimens of each group were examined histologically (hematoxylin-eosin [HE] staining, immunohistostaining, and scanning electron microscopy), biochemically (DNA and 4-hydroxyproline) and mechanically. The results showed that recellularization was comparable to the specimens of hybrid scaffolds and controls. The specimens of hybrid scaffolds and controls revealed comparable amounts of cell mass and 4-hydroxyproline (P〉0.05). However, the specimens of hybrid scaffolds showed a significant increase in mechanical strength, compared to the controls (P〈0.05). This study demonstrated the superiority of the hybrid scaffolds to increase the mechanical strength of tissue engineered heart valves. And compared to the decellularized valve scaffolds, the hybrid scaffolds showed similar effects on the proliferation of MSCs and formation of extracellular matrix. It was believed that the hybrid scaffolds could be used for the construction of tissue engineered heart valves.
基金supported by the National Key Research and Development Program of China(2021YFA1101900 and 2023YFB3810100)the National Natural Science Foundation of China(82270381 and 81930052)the Major Science and Technology Special Plan Project of Yunnan Province(202302AA310045).
文摘In situ regeneration is a promising strategy for constructing tissue engineering heart valves(TEHVs).Currently,the decellularized heart valve(DHV)is extensively employed as a TEHV scaffold.Nevertheless,DHV exhibits limited blood compatibility and notable difficulties in endothelialization,resulting in thrombosis and graft failure.The red blood cell membrane(RBCM)exhibits excellent biocompatibility and prolonged circulation stability and is extensively applied in the camouflage of nanoparticles for drug delivery;however,there is no report on its application for large-scale modification of decellularized extracellular matrix(ECM).For the first time,we utilized a layer-by-layer assembling strategy to immobilize RBCM on the surface of DHV and construct an innovative TEHV scaffold.Our findings demonstrated that the scaffold significantly improved the hemocompatibility of DHV by effectively preventing plasma protein adsorption,activated platelet adhesion,and erythrocyte aggregation,and induced macrophage polarization toward the M2 phenotype in vitro.Moreover,RBCM modification significantly enhanced the mechanical properties and enzymatic stability of DHV.The rat models of subcutaneous embedding and abdominal aorta implantation showed that the scaffold regulated the polarization of macrophages into the anti-inflammatory and pro-modeling M2 phenotype and promoted endothelialization and ECM remodeling in the early stage without thrombosis and calcification.The novel TEHV exhibits excellent performance and can overcome the limitations of commonly used clinical prostheses.
文摘Objectives To investigate the effects of epoxy chloropropan on the expression of matrix metalloproteinases-9 (MMP-9)in creating tissue engineered heart valves(TEHV),on the tissue structures of TEHV,and to study the effects of epoxy chloropropan on the calcification of TEHV.Methods The porcine aortic valve leaflets were digested and decellularized by using detergent and trypsin.Those treated with 0.3% glutaraldehyde for 48 hours were the control group;those treated with 3% epoxy choloropropan for 24 hours were the experimental group.The cultured human bone marrow mesenchymal stem cells(hBMSCs)were seeded onto the decellularized scaffolds of TEHV.The histological studies were done with pathological sections and scanning electron microscopy and reverse transcriptase-polymerase chain reaction(RT-PCR)were used to detect the expression of MMP-9.Results In the experimental group.the histology showed that the BMSCs grew well into the pores and formed a confluent layer in decellularized scaffolds;RT-PCR indicated significantly attenuated expressions of MMP-9,compared with the control(P〈0.05).Conclusion The decellularized porcine aortic valves treated with 3% epoxy chloropropan may inhibit the expression of MMP-9;therefore epoxy chloropropan may prevent the calcification of tissue engineered heart valves.
基金supported by the National High Technology Research and Development Program of China(2012AA020506)Key Program of National Natural Science Foundation of China(31030032)+1 种基金National Natural Science Funds for Distinguished Young Scholar(31025013)the National Natural Science Foundation of China(31100697)
文摘Interstitial Cajal-like cells are a distinct type of interstitial cell with a wide distribution in mammalian organs and tissues,and have been given the name"telocytes".Recent studies have demonstrated the potential roles of telocytes in heart development,renewal,and repair.However,further research on the functions of telocytes is limited by the complicated in vivo environment.This study was designed to construct engineered heart tissue(EHT)as a three-dimensional model in vitro to better understand the role of telocytes in the architectural organization of the myocardium.EHTs were constructed by seeding neonatal cardiomyocytes in collagen/Matrigel scaffolds followed by culture under persistent static stretch.Telocytes in EHTs were identified by histology,toluidine blue staining,immunofluorescence,and transmission electron microscopy.The results from histology and toluidine blue staining demonstrated widespread putative telocytes with compact toluidine blue-stained nuclei,which were located around cardiomyocytes.Prolongations from the cell bodies showed a characteristic dichotomous branching pattern and formed networks in EHTs.Immunofluorescence revealed positive staining of telocytes for CD34 and vimentin with typical moniliform prolongations.A series of electron microscopy images further showed that typical telocytes embraced the cardiomyocytes with their long prolongations and exhibited a marked appearance of nursing cardiomyocytes during the construction of EHTs.This finding highlights the great importance of telocytes in the architectural organization of EHTs.It also suggests that EHT is an appropriate physical and pathological model system in vitro to study the roles of telocytes during heart development and regeneration.
基金supported by grants from the National Natural Sciences Foundation of China(No.30571839 and30600608)
文摘The cell adhesive properties of decellularized valve scaffolds were promoted by immobilization of valve scaffold with arginine-glycine-aspartic acid (RGD)-containing peptides. Porcine aortic valves were decellularized with trypsin/EDTA, and detergent Triton X-100. With the help of a coupling reagent Sulfo-LC-SPDP, the valve scaffolds were immobilized with glycine-arginine-glycine-aspartic acid-serine-proline-cysteine (GRGDSPC) peptide. X-ray photoelectron spectroscopy (XPS) was used for surface structure analysis. Myofibroblasts harvested from rats were seeded onto the valve scaffolds. Cell count by using microscopy and modified MTT assay were performed to assess cell adhesion. Based on the spectra of XPS, the conjugation of GRGDSPC peptide with decellularized valve scaffolds was confirmed. Both cell count and MTT assay showed that myofibroblasts were much easier to adhere to the modified valve scaffolds, which was also confirmed histologically. Our findings suggest that it is feasible to immobilize RGD-containing peptides onto decellularized valve scaffolds. And the technique can effectively promote cell adhesion, which is beneficial for in vitro tissue engineering of heart valves.
基金the National Natural Science Foundation of China(No.30371414,30571839,30600608)
文摘Porcine aortic valves were decellularized with trypsinase/EDTA and Triton-100. With the help of a coupling reagent Sulfo-LC-SPDP, the biological valve scaffolds were immobilized with one of RGD (arginine-glycine-aspartic acid) containing peptides, called GRGDSPC peptide. Myofibroblasts harvested from rats were seeded onto them. Based on the spectra of X-ray photoelectron spectroscopy, we could find conjugation of GRGDSPC peptide and the scaffolds. Cell count by both microscopy and MTT assay showed that myofibroblasts were easier to adhere to the modified scaffolds. It is proved that it is feasible to immobilize RGD peptides onto decellularized valve scaffolds, and effective to promote cell adhesion, which is beneficial for constructing tissue engineering heart valves in vitro.