Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform int...The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.展开更多
Wide-bandgap perovskite solar cells(WBG PSCs)have garnered significant research attention for their potential in tandem solar cells.However,they face challenges such as high open-circuit voltage losses and severe phas...Wide-bandgap perovskite solar cells(WBG PSCs)have garnered significant research attention for their potential in tandem solar cells.However,they face challenges such as high open-circuit voltage losses and severe phase instability.These issues are primarily owing to the formation of defects,ion migration,and energy level mismatches at the interface of WBG perovskite devices.Meanwhile,inverted PSCs demonstrate superior stability potential and compatibility with tandem devices,making them the most promising application for WBG perovskite materials.Consequently,interface modulation for such devices has become imperative.In this review,from the perspective of applicability in tandem devices,we first provided a concise overview of WBG perovskite research and its efficiency progress in inverted devices.We further discussed interface carrier dynamics and the potential impact of interfaces on such device performance.Afterward,we presented a comprehensive summary of interface engineering in inverted WBG perovskite(1.60 eV-1.80 eV)solar cells.The research particularly explored both the upper and buried interfaces of WBG absorbers in the inverted PSCs,thoroughly investigating interface design strategies and outlining promising research directions.Finally,this review provides insight into the future development of interface engineering for high-performance and large-area WBG PSCs.展开更多
Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid ma...Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional(3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam(NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of N ixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction(OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm^(–2), respectively, along with high stability of 150 h at 100 mA cm^(–2). Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm^(–2), accompanied by excellent stability at 100 mA cm^(–2) for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.展开更多
Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically re...Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically reduce CO_(2) emission and contribute to carbon-neutral cycle. E cient electrocatalytic reduction of chemically inert CO_(2) is challenging from thermodynamic and kinetic points of view. Therefore,low-cost,highly e cient,and readily available electrocatalysts have been the focus for promoting the conversion of CO_(2). Very recently,interface engineering has been considered as a highly e ective strategy to modulate the electrocatalytic performance through electronic and/or structural modulation,regulations of electron/proton/mass/intermediates,and the control of local reactant concentration,thereby achieving desirable reaction pathway,inhibiting competing hydrogen generation,breaking binding-energy scaling relations of intermediates,and promoting CO_(2) mass transfer. In this review,we aim to provide a comprehensive overview of current developments in interface engineering for CO_(2) RR from both a theoretical and experimental stand-point,involving interfaces between metal and metal,metal and metal oxide,metal and nonmetal,metal oxide and metal oxide,organic molecules and inorganic materials,electrode and electrolyte,molecular catalysts and electrode,etc. Finally,the opportunities and challenges of interface engineering for CO_(2) RR are proposed.展开更多
To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surfa...To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed.展开更多
Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3...Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3))synthesis.However,the e-NRR performance is currently impeded by the inherent inertness of N_(2) molecules,the extremely slow kinetics and the overwhelming competition from the hydrogen evolution reaction(HER),all of which cause unsatisfied yield and ammonia selectivity(Faradaic efficiency,FE).Defect and interface engineering are capable of achieving novel physical and chemical properties as well as superior synergistic effects for various electrocatalysts.In this review,we first provide a general introduction to the NRR mechanism.We then focus on the recent progress in defect and interface engineering and summarize how defect and interface can be rationally designed and functioned in NRR catalysts.Particularly,the origin of superior NRR catalytic activity by applying these approaches was discussed from both theoretical and experimental perspectives.Finally,the remaining challenges and future perspectives in this emerging area are highlighted.It is expected that this review will shed some light on designing NRR electrocatalysts with excellent activity,selectivity and stability.展开更多
Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficienc...Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficiency of their half reactions including hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),electrocatalysts are usually essential to reduce their kinetic energy barriers.Electrospun nanomaterials possess a unique one‐dimensional structure for outstanding electron and mass transportation,large specific surface area,and the possibilities of flexibility with the porous feature,which are good candidates as efficient electrocatalysts for water splitting.In this review,we focus on the recent research progress on the electrospun nanomaterials‐based electrocatalysts for HER,OER,and overall water splitting reaction.Specifically,the insights of the influence of the electronic modulation and interface engineering of these electrocatalysts on their electrocatalytic activities will be deeply discussed and highlighted.Furthermore,the challenges and development opportunities of the electrospun nanomaterials‐based electrocatalysts for water splitting are featured.Based on the achievements of the significantly enhanced performance from the electronic modulation and interface engineering of these electrocatalysts,full utilization of these materials for practical energy conversion is anticipated.展开更多
The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the curren...The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs.展开更多
The catalyst innovation that aims at noble-metal-free substitutes is one key aspect for future sustainable hydrogen energy deployment.In this paper,a nickel cobalt sulfoselenide/black phosphorus heterostructure(NiCoSe...The catalyst innovation that aims at noble-metal-free substitutes is one key aspect for future sustainable hydrogen energy deployment.In this paper,a nickel cobalt sulfoselenide/black phosphorus heterostructure(NiCoSe|S/BP)was fabricated to realize the highly active and durable water electrolysis through interface and valence dual-engineering.The NiCoSe|S/BP nanostructure was constructed by in-situ growing NiCo hydroxide nanosheet arrays on few-layer BP and subsequently one-step sulfoselenization by SeS2.Besides the conductive merit of BP substrate,holes in p-type BP are capable of oxidizing the Co^(2+)to high-valence and electron-accepting Co^(3+),benefiting the oxygen evolution reaction(OER).Meanwhile,Ni^(3+)/Ni^(2+)ratio in the heterostructure is reduced to maintain the electrical neutrality,which corresponds to the increased electron-donating character for boosting hydrogen evolution reaction(HER).As for HER and OER,the heterostructured NiCoSe|S/BP electrocatalyst exhibits small overpotentials of 172 and 285 mV at 10 mA cm^(-2)(η_(10))in alkaline media,respectively.And overall water splitting has been achieved at a low cell potential of 1.67 V at η_(10) with high stability.Molecular sensing and density functional theory(DFT)calculations are further proposed for understanding the rate-determine steps and enhanced catalytic mechanism.The investigation presents a deep-seated perception for the electrocatalytic performance enhancement of BP-based heterostructure.展开更多
Interface engineering has been widely investigated to regulate the structure and performance of electrodes and photoelectrodes,but the investigation of multiple carbon interface modifications on the electrocatalytic o...Interface engineering has been widely investigated to regulate the structure and performance of electrodes and photoelectrodes,but the investigation of multiple carbon interface modifications on the electrocatalytic oxygen evolution reaction(OER)is still shortage.Herein,we report remarkable promotion of OER performance on the NiFe‐based nanocomposite electrocatalyst via the synergy of multiple carbon‐based interface engineering.Specifically,carbon nanotubes were in situ grown on carbon fiber paper to improve the interface between CFP and NiFeO_(x)H_(y),and graphite carbon nanoparticles were in situ loaded and partly doped into the NiFeO_(x)H_(y) to modify the intergranular interface charge transfer and electronic structure of NiFeO_(x)H_(y).Consequently,the as‐obtained NiFeO_(x)H_(y)‐C/CNTs/CFP catalyst exhibited significantly enhanced electrocatalytic OER activity with an overpotential of 202 mV at 10 mA cm^(-2) in 1 mol L^(-1) KOH.Our work not only extends application of carbon materials but also provides an alternative strategy to develop highly efficient electrocatalysts.展开更多
Interface engineering can improve the charge separation efficiency and inhibit photocorrosion is an emerging direction of developing more efficient and cost-effective photocatalytic systems.Herein,we report the sulfur...Interface engineering can improve the charge separation efficiency and inhibit photocorrosion is an emerging direction of developing more efficient and cost-effective photocatalytic systems.Herein,we report the sulfur-confined intimate Cd S intergrown Cd(Cd S/Cd)Ohmic junction(peanut-chocolate-ball like)for high-efficient H2production with superior anti-photocorrosion ability,which was fabricated from in-situ photoreduction of CdS intergrown Cd2SO4(OH)2(CdS/Cd2SO4(OH)2)prepared through a facile space-controlled-solvothermal method.The ratios of CdS/Cd can be effectively controlled by tunning that of CdS/Cd2SO4(OH)2which were prepared by adjusting the volume of reaction liquid and the remaining space of the reactor.Experiments investigations and density functional theory(DFT)calculations reveal that the Cd S intergrown Cd Ohmic junction interfaces(with appropriate content Cd intergrown on Cd S(19.54 wt%))are beneficial in facilitating the transfer of photogenerated electrons by constructing an interfacial electric field and forming sulfur-confined structures for preventing the positive holes(h+)oxidize the Cd S.This contributes to a high photocatalytic H2production activity of 95.40μmol h-1(about 32.3 times higher than bare Cd S)and possesses outstanding photocatalytic stability over 205 h,much longer than most Cd S-based photocatalysts previously reported.The interface engineering design inspired by the structure of peanut-chocolate-ball can greatly promote the future development of catalytic systems for wider application.展开更多
Constructing a low cost,and high-efficiency oxygen evolution reaction(OER)electrocatalyst is of great significance for improving the performance of alkaline electrolyzer,which is still suffering from highenergy consum...Constructing a low cost,and high-efficiency oxygen evolution reaction(OER)electrocatalyst is of great significance for improving the performance of alkaline electrolyzer,which is still suffering from highenergy consumption.Herein,we created a porous iron phosphide and tungsten oxide self-supporting electrocatalyst with oxygen-containing vacancies on foam nickel(Fe_(2)P-WO_(2.92)/NF)through a facile insitu growth,etching and phosphating strategies.The sequence-controllable strategy will not only generate oxygen vacancies and improve the charge transfer between Fe_(2)P and WO_(2.92) components,but also improve the catalyst porosity and expose more active sites.Electrochemical studies illustrate that the Fe_(2)P-WO_(2.92)/NF catalyst presents good OER activity with a low overpotential of 267 mV at 100 mA cm^(-2),a small Tafel slope of 46.3 mV dec^(-1),high electrical conductivity,and reliable stability at high current density(100 mA cm^(-2) for over 60 h in 1.0 M KOH solution).Most significantly,the operating cell voltage of Fe_(2)P-WO_(2.92)/NF‖Pt/C is as low as 1.90 V at 400 mA cm^(-2) in alkaline condition,which is one of the lowest reported in the literature.The electrocatalytic mechanism shows that the oxygen vacancies and the synergy between Fe_(2)P and WO_(2.92) can adjust the electronic structure and provide more reaction sites,thereby synergistically increasing OER activity.This work provides a feasible strategy to fabricate high-efficiency and stable non-noble metal OER electrocatalysts on the engineering interface.展开更多
The allure of high efficiency and low-temperature solution-processed organic-inorganic hybrid perovskite solar cells(PSCs)are inspiring scientists to seek for its commercialization.Interface passivation engineering ha...The allure of high efficiency and low-temperature solution-processed organic-inorganic hybrid perovskite solar cells(PSCs)are inspiring scientists to seek for its commercialization.Interface passivation engineering has become an effective way to further enhance the efficiency and stability of PSCs by defect passivation,reduces the charge recombination and ion migration initiation and hysteresis control,etc.Herein,we have summarized the effects and recent research progress of interface passivation engineering in PSCs.Interface passivation layers can be realized by using the solution and/or vacuum evaporation processes which are very adaptable to varied materials with different properties and fabrication processes for enhanced photovoltaic performance and stability.展开更多
For the commercialization of perovskite solar cells(PSCs), it is more appealing to develop high-performance simplified PSCs where perovskite films are just sandwiched between the back and front electrodes, in order to...For the commercialization of perovskite solar cells(PSCs), it is more appealing to develop high-performance simplified PSCs where perovskite films are just sandwiched between the back and front electrodes, in order to simplify the fabrication process and to reduce the cost. However, to date, this kind of devices shows rather low performance, and there are few researches on this subject.Herein, we report on a kind of compact PSCs(CPSCs) that are free of independent charge transport layers(CTLs). The devices are realized by the use of organic monolayer-modified effective electrodes, along with the use of [6,6]-phenyl-C61-butyric acid methyl ester(PCBM)-assisted anti-solvent technique to obtain ultra-thin(~10 nm) PCBM-embedded perovskite films. Compared to control devices, CPSCs achieve a promising champion power conversion efficiency of 19.6% with largely reduced hysteresis. Moreover, the unencapsulated CPSC shows good stability under ambient atmosphere, with only 10% efficiency loss after 60 days’ storage. This work indicates that, by delicate design, CPSCs with smaller materials consumption in device architecture can perform competitively as conventional PSCs. Further reduction in the actual usage of costly CTL materials can be expected upon our CPSCs by developing more facile and economic methods to prepare ultra-thin CTLs.展开更多
Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi...Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.展开更多
Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes,which governs the interface charge transfer,electron transportation,and structural stability.Herein,Mo...Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes,which governs the interface charge transfer,electron transportation,and structural stability.Herein,MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2-and nitrogen-doped three-dimensional(3D)carbon framework as MoSe2/MoC/N–C connection,which greatly improve the structural stability,electronic conductivity,and interfacial charge transfer.Moreover,the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework,producing much smaller MoSe2 nanodots.The obtained MoSe2 nanodots with fewer layers,rich edge sites,and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions.Employing as anode material for lithium-ion batteries,it shows ultralong cycle life(with 90%capacity retention after 5000 cycles at 2 A g−1)and excellent rate capability.Moreover,the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86%capacity retention at 2 A g−1 after 300 cycles.The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability,which can be extended as a potential general strategy for the interface engineering of composite materials.展开更多
As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and slugg...As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and sluggish kinetics,resulting in capacity fading and poor rate performance.Herein,we develop an interface engineering strategy to substantially enhance the sodium storage performance of MoS2 by incorporating layered MoS2 into three dimensional N-doped graphene scaffold.The strong coupling-interface between MoS2 and N-doped graphene scaffold can not only stabilize the MoS2 structure during sodium insertion/extraction processes,but also provide plenty of anchor sites for additional surface sodium storage.The 3D MoS2@N-doped graphene composite as anode for SIBs performs an outstanding specific capacity of 667.3 mA h g^-1 at 0.2 A g^-1,a prolonged stability with a capacity retention of 94.4%after 140cycles and excellent rate capability of 445 mA h g^-1 even at a high rate of 10 A g^-1.We combined experiment and theoretical simulation to further disclose the interaction between MoS2 and N-doped graphene,adsorption and diffusion of sodium on the composite and the corresponding sodium storage mechanism.This study opens a new door to develop high performance SIBs by introducing the interface engineering technique.展开更多
Interfacial defects and energy barrier would result in serious interfacial non-radiative recombination losses.In addition,the quality of perovskite films is highly dependent on deposition substrates.Consequently,there...Interfacial defects and energy barrier would result in serious interfacial non-radiative recombination losses.In addition,the quality of perovskite films is highly dependent on deposition substrates.Consequently,there is an urgent desire to develop multifunctional interface modulators to manage the interface between electron transport layer and perovskite layer.Here,we report a multifunctional buried interface modulation strategy that 4-fluoro-phenylammonium tetrafluoroborate (FBABF_(4)) consisting of simultaneously fluorinated anion and cation is inserted between SnO_(2)layer and perovskite layer.It is uncovered by time-of-flight secondary ion mass spectroscopy that the anion and cation in modifier are mainly located at this interface,which is put down to coordination bond of the fluorine atom on BF_(4)^(-) with SnO_(2),and the hydrogen bond of the fluorine atom on FBA^(+) with formamidinium.This suggests that simultaneous fluorination of anion and cation in the ionic liquid molecule is of crucial importance to ameliorate interfacial contact through chemical linker.The interface modification approach enables the realization of interfacial defect passivation,interfacial energy band alignment modulation,and perovskite crystallization manipulation,which are translated into enhanced efficiency and stability as well as significantly suppressed hysteresis.The multiple functions of FBABF_(4) endow the modified solar cells excellent photovoltaic performance with an efficiency exceeding 23%along with appealing long-term stability.This work highlights the critical role of fluorination strategy in engineering multifunctional organic salt modulators for improving interfacial contact.展开更多
Bulk and interface carrier nonradiative recombination losses impede the further improvement of power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs).It is highly necessary to develop multifunct...Bulk and interface carrier nonradiative recombination losses impede the further improvement of power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs).It is highly necessary to develop multifunctional strategy to minimize surface and interface nonradiative recombination losses.Herein,we report a bulk and interface defect passivation strategy via the synergistic effect of anions and cations,where multifunctional potassium sulphate(K_(2)SO_(4))is incorporated at SnO_(2)/perovskite interface.We find that K^(+)ions in K_(2)SO_(4)diffuse into perovskite layer and suppress the formation of bulk defects in perovskite films,and the SO_(4)^(2-)ions remain located at interface via the strong chemical interaction with SnO_(2)layer and perovskite layer,respectively.Through this synergistic modification strategy,effective defect passivation and improved energy band alignment are achieved simultaneously.These beneficial effects are translated into an efficiency increase from 19.45%to 21.18%with a low voltage deficit of0.53 V mainly as a result of boosted open-circuit voltage(V_(oc))after K_(2)SO_(4)modification.In addition,the K_(2)SO_(4)modification contributes to ameliorated stability.The present work provides a route to minimize bulk and interface nonradiative recombination losses for the simultaneous realization of PCE and stability enhancement by rational anion and cation synergistic engineering.展开更多
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
基金supported by the National Natural Science Foundation of China(52272235)supported by the Fundamental Research Funds for the Central Universities(WUT:2021III016GX).
文摘The structure–property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure.Designing thermoelectric materials with a simple,structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties.Here,we synthesized Bi_(2−x)Sb_(x)Te_(3)(x=0,0.1,0.2,0.4)nanoflakes using a hydrothermal method,and prepared Bi_(2−x)Sb_(x)Te_(3) thin films with predominantly(0001)interfaces by stacking the nanoflakes through spin coating.The influence of the annealing temperature and Sb content on the(0001)interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy.Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the(0001)interface.As such it enhances interfacial connectivity and improves the electrical transport properties.Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient.Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient,the maximum power factor of the Bi_(1.8)Sb_(0.2)Te_(3) nanoflake films reaches 1.72 mW m^(−1)K^(−2),which is 43%higher than that of a pure Bi_(2)Te_(3) thin film.
基金supported by the National Natural Science Foundation of China(Grant Nos.22375163,52203338,52172101,52103286)the Shaanxi Science and Technology Innovation Team(Grant No.2023-CX-TD-44)+1 种基金Shaanxi Key R&D Program(Grant No.2022KWZ-07)Shccig-Qinling Program.
文摘Wide-bandgap perovskite solar cells(WBG PSCs)have garnered significant research attention for their potential in tandem solar cells.However,they face challenges such as high open-circuit voltage losses and severe phase instability.These issues are primarily owing to the formation of defects,ion migration,and energy level mismatches at the interface of WBG perovskite devices.Meanwhile,inverted PSCs demonstrate superior stability potential and compatibility with tandem devices,making them the most promising application for WBG perovskite materials.Consequently,interface modulation for such devices has become imperative.In this review,from the perspective of applicability in tandem devices,we first provided a concise overview of WBG perovskite research and its efficiency progress in inverted devices.We further discussed interface carrier dynamics and the potential impact of interfaces on such device performance.Afterward,we presented a comprehensive summary of interface engineering in inverted WBG perovskite(1.60 eV-1.80 eV)solar cells.The research particularly explored both the upper and buried interfaces of WBG absorbers in the inverted PSCs,thoroughly investigating interface design strategies and outlining promising research directions.Finally,this review provides insight into the future development of interface engineering for high-performance and large-area WBG PSCs.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2021A1515110859)the Research Fund Program of Key Laboratory of Fuel Cell Technology of Guangdong Province+2 种基金the Natural Sciences and Engineering Research Council of Canada(NSERC)Institut National de la Recherche Scientifique(INRS)。
文摘Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional(3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam(NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of N ixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction(OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm^(–2), respectively, along with high stability of 150 h at 100 mA cm^(–2). Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm^(–2), accompanied by excellent stability at 100 mA cm^(–2) for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.
基金supported by the National Natural Science Foundation of China (22071172)the Ministry of Science and Technology of China (2016YFB0401100,2017YFA0204503,and 2018YFA0703200)Shandong Provincial Natural Science Foundation (No. ZR2019BB025)。
文摘Electrocatalytic CO_(2) reduction reaction(CO_(2) RR) can store and transform the intermittent renewable energy in the form of chemical energy for industrial production of chemicals and fuels,which can dramatically reduce CO_(2) emission and contribute to carbon-neutral cycle. E cient electrocatalytic reduction of chemically inert CO_(2) is challenging from thermodynamic and kinetic points of view. Therefore,low-cost,highly e cient,and readily available electrocatalysts have been the focus for promoting the conversion of CO_(2). Very recently,interface engineering has been considered as a highly e ective strategy to modulate the electrocatalytic performance through electronic and/or structural modulation,regulations of electron/proton/mass/intermediates,and the control of local reactant concentration,thereby achieving desirable reaction pathway,inhibiting competing hydrogen generation,breaking binding-energy scaling relations of intermediates,and promoting CO_(2) mass transfer. In this review,we aim to provide a comprehensive overview of current developments in interface engineering for CO_(2) RR from both a theoretical and experimental stand-point,involving interfaces between metal and metal,metal and metal oxide,metal and nonmetal,metal oxide and metal oxide,organic molecules and inorganic materials,electrode and electrolyte,molecular catalysts and electrode,etc. Finally,the opportunities and challenges of interface engineering for CO_(2) RR are proposed.
基金supported by the Natural Science Foundation of Shandong Province(ZR2019PB013)the Natural Science Foundation of Tianjin(19JCZDJC37700)the National Natural Science Foundation of China(21421001 and 21875118)。
文摘To date,much efforts have been devoted to the high-efficiency noble metal-free electrocatalysts for hydrogen-and oxygen-involving energy conversion reactions,due to their abundance,low cost and nultifunctionally.Surface/interface engineering is found to be effective in achieving novel physicochemical properties and synergistic effects in nanomaterials for electrocatalysis.Among various engineering strategies,heteroatom-doping has been regarded as a most promising method to improve the electrocatalytic performance via the regulation of electronic structure of catalysts,and numerous works were reported on the synthesis method and mechanism investigation of heteroatom-doping electrocatalysts,though the heteroatom-doping can only provide limited active sites.Engineering of other defects such as vacancies and edge sites and construction of heterostructure have shown to open up a potential avenue for the development of noble metal-free electrocatalysts.In addition,surface functionalization can attach various molecules onto the surface of materials to easily modify their physical or chemical properties,being as a promising complement or substitute for offering materials with catalytic properties.This paper gives the insights into the diverse strategies of surface/interface engineering of the highefficiency noble metal-free electrocatalysts for energy-related electrochemical reactions.The significant advances are summarized.The unique advantages and mechanisms for specific applications are highlighted.The current challenges and outlook of this growing field are also discussed.
基金supported by the National Natural Science Foundation of China(grant no.21904071 and 22071115)。
文摘Electrochemical nitrogen reduction reaction(e-NRR)under ambient conditions is an emerging strategy to tackle the hydrogen-and energy-intensive operations for traditional Haber-Bosch process in industrial ammonia(NH_(3))synthesis.However,the e-NRR performance is currently impeded by the inherent inertness of N_(2) molecules,the extremely slow kinetics and the overwhelming competition from the hydrogen evolution reaction(HER),all of which cause unsatisfied yield and ammonia selectivity(Faradaic efficiency,FE).Defect and interface engineering are capable of achieving novel physical and chemical properties as well as superior synergistic effects for various electrocatalysts.In this review,we first provide a general introduction to the NRR mechanism.We then focus on the recent progress in defect and interface engineering and summarize how defect and interface can be rationally designed and functioned in NRR catalysts.Particularly,the origin of superior NRR catalytic activity by applying these approaches was discussed from both theoretical and experimental perspectives.Finally,the remaining challenges and future perspectives in this emerging area are highlighted.It is expected that this review will shed some light on designing NRR electrocatalysts with excellent activity,selectivity and stability.
基金This study was financially supported by the National Natural Science Foundation of China(51973079,51773075 and 21875084)the Project of Department of Scienceand Technology of Jilin Province,China(20190101013JH).
文摘Nowdays,electrocatalytic water splitting has been regarded as one of the most efficient means to approach the urgent energy crisis and environmental issues.However,to speed up the electrocatalytic conversion efficiency of their half reactions including hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),electrocatalysts are usually essential to reduce their kinetic energy barriers.Electrospun nanomaterials possess a unique one‐dimensional structure for outstanding electron and mass transportation,large specific surface area,and the possibilities of flexibility with the porous feature,which are good candidates as efficient electrocatalysts for water splitting.In this review,we focus on the recent research progress on the electrospun nanomaterials‐based electrocatalysts for HER,OER,and overall water splitting reaction.Specifically,the insights of the influence of the electronic modulation and interface engineering of these electrocatalysts on their electrocatalytic activities will be deeply discussed and highlighted.Furthermore,the challenges and development opportunities of the electrospun nanomaterials‐based electrocatalysts for water splitting are featured.Based on the achievements of the significantly enhanced performance from the electronic modulation and interface engineering of these electrocatalysts,full utilization of these materials for practical energy conversion is anticipated.
基金the support of the Zhejiang Provincial Natural Science Foundation of China (LR20E020002, LD22E020006)the National Natural Science Foundation of China (NSFC) (U20A20253, 21972127, 22279116)。
文摘The rapid development of new energy vehicles and 5G communication technologies has led to higher demands for the safety,energy density,and cycle performance of lithium-ion batteries as power sources.However,the currently used liquid carbonate compounds in commercial lithium-ion battery electrolytes pose potential safety hazards such as leakage,swelling,corrosion,and flammability.Solid electrolytes can be used to mitigate these risks and create a safer lithium battery.Furthermore,high-energy density can be achieved by using solid electrolytes along with high-voltage cathode and metal lithium anode.Two types of solid electrolytes are generally used:inorganic solid electrolytes and polymer solid electrolytes.Inorganic solid electrolytes have high ionic conductivity,electrochemical stability window,and mechanical strength,but suffer from large solid/solid contact resistance between the electrode and electrolyte.Polymer solid electrolytes have good flexibility,processability,and contact interface properties,but low room temperature ionic conductivity,necessitating operation at elevated temperatures.Composite solid electrolytes(CSEs) are a promising alternative because they offer light weight and flexibility,like polymers,as well as the strength and stability of inorganic electrolytes.This paper presents a comprehensive review of recent advances in CSEs to help researchers optimize CSE composition and interactions for practical applications.It covers the development history of solid-state electrolytes,CSE properties with respect to nanofillers,morphology,and polymer types,and also discusses the lithium-ion transport mechanism of the composite electrolyte,and the methods of engineering interfaces with the positive and negative electrodes.Overall,the paper aims to provide an outlook on the potential applications of CSEs in solid-state lithium batteries,and to inspire further research aimed at the development of more systematic optimization strategies for CSEs.
基金jointly supported by the National Natural Science Foundation of China(Grant No.51802252)Natural Science Foundation of Shaanxi Province(Nos.2020JM-032,2019TD-020)+3 种基金111 project 2.0(BP0618008)the fund of the State Key Laboratory of Solidification Processing in NPU(Grant No.SKLSP202116)supported by Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials(LHG-2020-0003)China Postdoctoral Science Foundation(2019M663698)。
文摘The catalyst innovation that aims at noble-metal-free substitutes is one key aspect for future sustainable hydrogen energy deployment.In this paper,a nickel cobalt sulfoselenide/black phosphorus heterostructure(NiCoSe|S/BP)was fabricated to realize the highly active and durable water electrolysis through interface and valence dual-engineering.The NiCoSe|S/BP nanostructure was constructed by in-situ growing NiCo hydroxide nanosheet arrays on few-layer BP and subsequently one-step sulfoselenization by SeS2.Besides the conductive merit of BP substrate,holes in p-type BP are capable of oxidizing the Co^(2+)to high-valence and electron-accepting Co^(3+),benefiting the oxygen evolution reaction(OER).Meanwhile,Ni^(3+)/Ni^(2+)ratio in the heterostructure is reduced to maintain the electrical neutrality,which corresponds to the increased electron-donating character for boosting hydrogen evolution reaction(HER).As for HER and OER,the heterostructured NiCoSe|S/BP electrocatalyst exhibits small overpotentials of 172 and 285 mV at 10 mA cm^(-2)(η_(10))in alkaline media,respectively.And overall water splitting has been achieved at a low cell potential of 1.67 V at η_(10) with high stability.Molecular sensing and density functional theory(DFT)calculations are further proposed for understanding the rate-determine steps and enhanced catalytic mechanism.The investigation presents a deep-seated perception for the electrocatalytic performance enhancement of BP-based heterostructure.
文摘Interface engineering has been widely investigated to regulate the structure and performance of electrodes and photoelectrodes,but the investigation of multiple carbon interface modifications on the electrocatalytic oxygen evolution reaction(OER)is still shortage.Herein,we report remarkable promotion of OER performance on the NiFe‐based nanocomposite electrocatalyst via the synergy of multiple carbon‐based interface engineering.Specifically,carbon nanotubes were in situ grown on carbon fiber paper to improve the interface between CFP and NiFeO_(x)H_(y),and graphite carbon nanoparticles were in situ loaded and partly doped into the NiFeO_(x)H_(y) to modify the intergranular interface charge transfer and electronic structure of NiFeO_(x)H_(y).Consequently,the as‐obtained NiFeO_(x)H_(y)‐C/CNTs/CFP catalyst exhibited significantly enhanced electrocatalytic OER activity with an overpotential of 202 mV at 10 mA cm^(-2) in 1 mol L^(-1) KOH.Our work not only extends application of carbon materials but also provides an alternative strategy to develop highly efficient electrocatalysts.
基金supported by the National Natural Science Foundation of China(22162008,22162007)the Science and Technology Supporting Project of Guizhou Province([2022]208,[2021]480)the Basic Research Program of Science&Technology Department of Guizhou Province([2020]1Y055)。
文摘Interface engineering can improve the charge separation efficiency and inhibit photocorrosion is an emerging direction of developing more efficient and cost-effective photocatalytic systems.Herein,we report the sulfur-confined intimate Cd S intergrown Cd(Cd S/Cd)Ohmic junction(peanut-chocolate-ball like)for high-efficient H2production with superior anti-photocorrosion ability,which was fabricated from in-situ photoreduction of CdS intergrown Cd2SO4(OH)2(CdS/Cd2SO4(OH)2)prepared through a facile space-controlled-solvothermal method.The ratios of CdS/Cd can be effectively controlled by tunning that of CdS/Cd2SO4(OH)2which were prepared by adjusting the volume of reaction liquid and the remaining space of the reactor.Experiments investigations and density functional theory(DFT)calculations reveal that the Cd S intergrown Cd Ohmic junction interfaces(with appropriate content Cd intergrown on Cd S(19.54 wt%))are beneficial in facilitating the transfer of photogenerated electrons by constructing an interfacial electric field and forming sulfur-confined structures for preventing the positive holes(h+)oxidize the Cd S.This contributes to a high photocatalytic H2production activity of 95.40μmol h-1(about 32.3 times higher than bare Cd S)and possesses outstanding photocatalytic stability over 205 h,much longer than most Cd S-based photocatalysts previously reported.The interface engineering design inspired by the structure of peanut-chocolate-ball can greatly promote the future development of catalytic systems for wider application.
基金supported by the National Natural Science Foundation of China(no.21965005)the Natural Science Foundation of Guangxi Province(2018GXNSFAA294077,2021GXNSFAA076001)+1 种基金the Project of High-Level Talents of Guangxi(F-KA18015)Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20297039)。
文摘Constructing a low cost,and high-efficiency oxygen evolution reaction(OER)electrocatalyst is of great significance for improving the performance of alkaline electrolyzer,which is still suffering from highenergy consumption.Herein,we created a porous iron phosphide and tungsten oxide self-supporting electrocatalyst with oxygen-containing vacancies on foam nickel(Fe_(2)P-WO_(2.92)/NF)through a facile insitu growth,etching and phosphating strategies.The sequence-controllable strategy will not only generate oxygen vacancies and improve the charge transfer between Fe_(2)P and WO_(2.92) components,but also improve the catalyst porosity and expose more active sites.Electrochemical studies illustrate that the Fe_(2)P-WO_(2.92)/NF catalyst presents good OER activity with a low overpotential of 267 mV at 100 mA cm^(-2),a small Tafel slope of 46.3 mV dec^(-1),high electrical conductivity,and reliable stability at high current density(100 mA cm^(-2) for over 60 h in 1.0 M KOH solution).Most significantly,the operating cell voltage of Fe_(2)P-WO_(2.92)/NF‖Pt/C is as low as 1.90 V at 400 mA cm^(-2) in alkaline condition,which is one of the lowest reported in the literature.The electrocatalytic mechanism shows that the oxygen vacancies and the synergy between Fe_(2)P and WO_(2.92) can adjust the electronic structure and provide more reaction sites,thereby synergistically increasing OER activity.This work provides a feasible strategy to fabricate high-efficiency and stable non-noble metal OER electrocatalysts on the engineering interface.
基金the National Key Research and Development Plan(2017YFE0131900,2019YFE0107200)National Natural Science Foundation of China(52072284)+2 种基金the Fundamental Research Funds for the Central Universities(WUT:202443004)the Technological Innovation Key Project of Hubei Province(2018AAA048).J.Z.thanks the support the“Chutian Scholar Program”of Hubei Province,China.
文摘The allure of high efficiency and low-temperature solution-processed organic-inorganic hybrid perovskite solar cells(PSCs)are inspiring scientists to seek for its commercialization.Interface passivation engineering has become an effective way to further enhance the efficiency and stability of PSCs by defect passivation,reduces the charge recombination and ion migration initiation and hysteresis control,etc.Herein,we have summarized the effects and recent research progress of interface passivation engineering in PSCs.Interface passivation layers can be realized by using the solution and/or vacuum evaporation processes which are very adaptable to varied materials with different properties and fabrication processes for enhanced photovoltaic performance and stability.
基金supported by the Guangdong High-level Personnel of Special Support Program-Outstanding young scholar in science and technology innovation(Grant No.2015TQ01C543)the National Key Research and Development Project funding from the Ministry of Science and Technology of China(Grants Nos.2016YFA0202400 and 2016YFA0202404)+3 种基金the Peacock Team Project funding from Shenzhen Science and Technology Innovation Committee(Grant No.KQTD2015033110182370)the National Natural Science Foundation of China(Grant No.51776094)the Guangdong Natural Science Funds for Distinguished Young Scholars(Grant No.2015A030306044)the Guangdong-Hong Kong joint innovation project(Grant No.2016A050503012)
文摘For the commercialization of perovskite solar cells(PSCs), it is more appealing to develop high-performance simplified PSCs where perovskite films are just sandwiched between the back and front electrodes, in order to simplify the fabrication process and to reduce the cost. However, to date, this kind of devices shows rather low performance, and there are few researches on this subject.Herein, we report on a kind of compact PSCs(CPSCs) that are free of independent charge transport layers(CTLs). The devices are realized by the use of organic monolayer-modified effective electrodes, along with the use of [6,6]-phenyl-C61-butyric acid methyl ester(PCBM)-assisted anti-solvent technique to obtain ultra-thin(~10 nm) PCBM-embedded perovskite films. Compared to control devices, CPSCs achieve a promising champion power conversion efficiency of 19.6% with largely reduced hysteresis. Moreover, the unencapsulated CPSC shows good stability under ambient atmosphere, with only 10% efficiency loss after 60 days’ storage. This work indicates that, by delicate design, CPSCs with smaller materials consumption in device architecture can perform competitively as conventional PSCs. Further reduction in the actual usage of costly CTL materials can be expected upon our CPSCs by developing more facile and economic methods to prepare ultra-thin CTLs.
基金supported by the National Natural Science Foundation of China(52172239)Project of State Key Laboratory of Environment-Friendly Energy Materials(SWUST,Grant Nos.22fksy23 and 18ZD320304)+3 种基金the Frontier Project of Chengdu Tianfu New Area Institute(SWUST,Grand No.2022ZY017)Chongqing Talents:Exceptional Young Talents Project(Grant No.CQYC201905041)Natural Science Foundation of Chongqing China(Grant No.cstc2021jcyj-jqX0031)Interdiscipline Team Project under auspices of“Light of West”Program in Chinese Academy of Sciences(Grant No.xbzg-zdsys-202106).
文摘Rechargeable magnesium-ion(Mg-ion)batteries have attracted wide attention for energy storage.However,magnesium anode is still limited by the irreversible Mg plating/stripping procedure.Herein,a well-designed binary Bi_(2)O_(3)-Bi_(2)S_(3)(BO-BS)heterostructure is fulfilled by virtue of the cooperative interface and energy band engineering targeted fast Mg-ion storage.The built-in electronic field resulting from the asymmetrical electron distribution at the interface of electron-rich S center at Bi_(2)S_(3) side and electron-poor O center at Bi_(2)O_(3) side effectively accelerates the electrochemical reaction kinetics in the Mg-ion battery system.Moreover,the as-designed heterogenous interface also benefits to maintaining the electrode integrity.With these advantages,the BO-BS electrode displays a remarkable capacity of 150.36 mAh g^(−1) at 0.67 A g^(-1) and a superior cycling stability.This investigation would offer novel insights into the rational design of functional heterogenous electrode materials targeted the fast reaction kinetics for energy storage systems.
基金This work was supported by the National Natural Science Foundation of China(No 51872334,51932011,51874326,51572299)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(2018JJ1036)the Independent exploration and innovation Project for graduate students of central south university(2019zzts049).
文摘Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes,which governs the interface charge transfer,electron transportation,and structural stability.Herein,MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2-and nitrogen-doped three-dimensional(3D)carbon framework as MoSe2/MoC/N–C connection,which greatly improve the structural stability,electronic conductivity,and interfacial charge transfer.Moreover,the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework,producing much smaller MoSe2 nanodots.The obtained MoSe2 nanodots with fewer layers,rich edge sites,and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions.Employing as anode material for lithium-ion batteries,it shows ultralong cycle life(with 90%capacity retention after 5000 cycles at 2 A g−1)and excellent rate capability.Moreover,the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86%capacity retention at 2 A g−1 after 300 cycles.The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability,which can be extended as a potential general strategy for the interface engineering of composite materials.
基金supported by the National Natural Science Foundation of China(Grant No.U1904187 and 21501049)the Fund of Key Scientific and Technological Project of Henan Province(No.182102410081)the High Performance Computing Center of Henan Normal University。
文摘As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and sluggish kinetics,resulting in capacity fading and poor rate performance.Herein,we develop an interface engineering strategy to substantially enhance the sodium storage performance of MoS2 by incorporating layered MoS2 into three dimensional N-doped graphene scaffold.The strong coupling-interface between MoS2 and N-doped graphene scaffold can not only stabilize the MoS2 structure during sodium insertion/extraction processes,but also provide plenty of anchor sites for additional surface sodium storage.The 3D MoS2@N-doped graphene composite as anode for SIBs performs an outstanding specific capacity of 667.3 mA h g^-1 at 0.2 A g^-1,a prolonged stability with a capacity retention of 94.4%after 140cycles and excellent rate capability of 445 mA h g^-1 even at a high rate of 10 A g^-1.We combined experiment and theoretical simulation to further disclose the interaction between MoS2 and N-doped graphene,adsorption and diffusion of sodium on the composite and the corresponding sodium storage mechanism.This study opens a new door to develop high performance SIBs by introducing the interface engineering technique.
基金supported by the National Natural Science Foundation of China (Grant Nos. 62004058, U21A2076, 21701041, 52071048)the Nature Science Foundation of Hebei Province (Grant No. F2020202022)+4 种基金the Open Fund of the State Key Laboratory of Integrated Optoelectronics (Grant No. IOSKL2020KF09)the State Key Laboratory of Reliability and Intelligence of Electrical Equipment (Grant No. EERI_PI20200005)supported by the Support plan for Overseas Students to Return to China for Entrepreneurship and Innovation (Grant No. cx2020003)the Fundamental Research Funds for the Central Universities (Grant No. 2020CDJ-LHZZ-074)the Natural Science Foundation of Chongqing (Grant No. cstc2020jcyjmsxmX0629)。
文摘Interfacial defects and energy barrier would result in serious interfacial non-radiative recombination losses.In addition,the quality of perovskite films is highly dependent on deposition substrates.Consequently,there is an urgent desire to develop multifunctional interface modulators to manage the interface between electron transport layer and perovskite layer.Here,we report a multifunctional buried interface modulation strategy that 4-fluoro-phenylammonium tetrafluoroborate (FBABF_(4)) consisting of simultaneously fluorinated anion and cation is inserted between SnO_(2)layer and perovskite layer.It is uncovered by time-of-flight secondary ion mass spectroscopy that the anion and cation in modifier are mainly located at this interface,which is put down to coordination bond of the fluorine atom on BF_(4)^(-) with SnO_(2),and the hydrogen bond of the fluorine atom on FBA^(+) with formamidinium.This suggests that simultaneous fluorination of anion and cation in the ionic liquid molecule is of crucial importance to ameliorate interfacial contact through chemical linker.The interface modification approach enables the realization of interfacial defect passivation,interfacial energy band alignment modulation,and perovskite crystallization manipulation,which are translated into enhanced efficiency and stability as well as significantly suppressed hysteresis.The multiple functions of FBABF_(4) endow the modified solar cells excellent photovoltaic performance with an efficiency exceeding 23%along with appealing long-term stability.This work highlights the critical role of fluorination strategy in engineering multifunctional organic salt modulators for improving interfacial contact.
基金financially supported by the Defense Industrial Technology Development Program(JCKY2017110C0654)the National Natural Science Foundation of China(11974063,61904023)the Chongqing Special Postdoctoral Science Foundation(cstc2019jcyj-bsh0026)。
文摘Bulk and interface carrier nonradiative recombination losses impede the further improvement of power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs).It is highly necessary to develop multifunctional strategy to minimize surface and interface nonradiative recombination losses.Herein,we report a bulk and interface defect passivation strategy via the synergistic effect of anions and cations,where multifunctional potassium sulphate(K_(2)SO_(4))is incorporated at SnO_(2)/perovskite interface.We find that K^(+)ions in K_(2)SO_(4)diffuse into perovskite layer and suppress the formation of bulk defects in perovskite films,and the SO_(4)^(2-)ions remain located at interface via the strong chemical interaction with SnO_(2)layer and perovskite layer,respectively.Through this synergistic modification strategy,effective defect passivation and improved energy band alignment are achieved simultaneously.These beneficial effects are translated into an efficiency increase from 19.45%to 21.18%with a low voltage deficit of0.53 V mainly as a result of boosted open-circuit voltage(V_(oc))after K_(2)SO_(4)modification.In addition,the K_(2)SO_(4)modification contributes to ameliorated stability.The present work provides a route to minimize bulk and interface nonradiative recombination losses for the simultaneous realization of PCE and stability enhancement by rational anion and cation synergistic engineering.