In the iron-based high-To bulk superconductors, Tc above 50 K was only observed in the electron-doped 1111-type compounds. Here we revisit the electron-doped SmFeAsO polycrystals to make a further investigation for th...In the iron-based high-To bulk superconductors, Tc above 50 K was only observed in the electron-doped 1111-type compounds. Here we revisit the electron-doped SmFeAsO polycrystals to make a further investigation for the highest Tc in these materials. To introduce more electron carriers and less crystal lattice distortions, we study the Th and F eodoping effects into the Sm-O layers with heavy electron doping. Dozens of Sm1-xThx FeAsO1-yFy samples are synthesized through the solid state reaction method, and these samples are carefully characterized by the structural, resistive, and magnetic measurements. We find that the codoping of Th and F clearly enhances the superconducting Tc more than the Th or F single-doped samples, with the highest record Tc up to 58.6K when x = 0.2 and y=0.225. Further element doping causes more impurities and lattice distortions in the samples with a weakened superconductivity.展开更多
With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Gao Chunxiao(高春晓)from the State Key Laboratory for Superhard Materials,Institute of Atom...With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Gao Chunxiao(高春晓)from the State Key Laboratory for Superhard Materials,Institute of Atomic and Molecular Physics,Jilin University and Prof.Chen Bin from the展开更多
Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs laye...Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe_(2)As_(2)upon potassium intercalation using molecular beam epitaxy.The in-situ low-temperature√2×√2scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic reconstruction of the FeAs layer and stripe pattern of KxFe_(2)As_(2),accompanied by the development of a superconducting-like gap.The ex-situ transport measurement with FeTe capping layers shows a superconducting transition with an onset temperature of 10 K.This work provides a promising way to characterize the FeAs layer directly and explore rich emergent physics with epitaxial superlattice design.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11474339the National Basic Research Program of China under Grant No 2016YFA0300301the Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘In the iron-based high-To bulk superconductors, Tc above 50 K was only observed in the electron-doped 1111-type compounds. Here we revisit the electron-doped SmFeAsO polycrystals to make a further investigation for the highest Tc in these materials. To introduce more electron carriers and less crystal lattice distortions, we study the Th and F eodoping effects into the Sm-O layers with heavy electron doping. Dozens of Sm1-xThx FeAsO1-yFy samples are synthesized through the solid state reaction method, and these samples are carefully characterized by the structural, resistive, and magnetic measurements. We find that the codoping of Th and F clearly enhances the superconducting Tc more than the Th or F single-doped samples, with the highest record Tc up to 58.6K when x = 0.2 and y=0.225. Further element doping causes more impurities and lattice distortions in the samples with a weakened superconductivity.
文摘With the support by the National Natural Science Foundation of China,a collaborative study by the research groups led by Prof.Gao Chunxiao(高春晓)from the State Key Laboratory for Superhard Materials,Institute of Atomic and Molecular Physics,Jilin University and Prof.Chen Bin from the
基金supported by the National Natural Science Foundation of China(Nos.12074210,51788104,11790311,and 12141403)the Basic and Applied Basic Research Major Programme of Guangdong Province of China(No.2021B0301030003)Jihua Laboratory(Project No.X210141TL210).
文摘Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe_(2)As_(2)upon potassium intercalation using molecular beam epitaxy.The in-situ low-temperature√2×√2scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic reconstruction of the FeAs layer and stripe pattern of KxFe_(2)As_(2),accompanied by the development of a superconducting-like gap.The ex-situ transport measurement with FeTe capping layers shows a superconducting transition with an onset temperature of 10 K.This work provides a promising way to characterize the FeAs layer directly and explore rich emergent physics with epitaxial superlattice design.