To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the ...To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the structure of pyrite is mainlycomposed of massive structure, disseminated structure, vein structure, reticular structure, comb structure and so on. Generally, thepyrite coexists with sphalerite, marmatite, pyrrhotite, chalcopyrite, galena, and arsenopyrite. And the texture of pyrite primarilyconsists of the metasomatic texture, solid solution texture, idiomorphic?hypidiomorphic granular texture, and disseminated texture.The content of indium in pyrite ranges from 0.491×10?6 to 65.1×10?6 with an average value of 14.38×10?6. Yet, the indium content inthe Gaofeng deposit is higher than that in the Dafulou and Tongkeng deposit, showing a particularly significant supernormalenrichment. Besides, the cadmium content in pyrite is also higher than other dispersed elements, and similarly the abnormalenrichment of cadmium in the Gaofeng deposit is also very significant. An obvious positive correlation exists between In and Cd, orTl, but a negative correlation between In and Re. It is difficult to find out a positive or negative correlation between In and Ga. Theelement zinc is of great importance to the enrichment of indium, which can possibly facilitate to the migration and crystallization of dispersed element indium.展开更多
Drilling for karst hydrothermal resources in eastern China has posed challenges,including disparities between the temperature and yield of geothermal water.It is evident that relying solely on geothermal anomalies or ...Drilling for karst hydrothermal resources in eastern China has posed challenges,including disparities between the temperature and yield of geothermal water.It is evident that relying solely on geothermal anomalies or indications of karst reservoirs is inadequate for the exploration of karst hydrothermal resources.This study seeks to elucidate the cause of geothermal sweet spots by analyzing the interplay between geothermal anomalies and karst reservoirs and the underlying geological conditions for karst hydrothermal enrichment.Key findings include:(1)the Bohai Bay Basin has been geologically favorable for the development of karst hydrothermal resources since the Mesozoic era;(2)the karst hydrothermal enrichment varies significantly between the basin’s margin and its interior.On the basin margin,the enrichment is largely driven by groundwater activity and faults,particularly where faults facilitate the upwelling of geothermal water.In contrast,within the basin’s interior,karst hydrothermal resources are predominantly influenced by buried hills and are especially enriched in areas facilitating the discharge of deep geothermal waters.展开更多
1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.C...1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.Conglomerate of展开更多
Exploration of the Sinian-Lower Paleozoic formations in the Sichuan Basin starts from the 1950s,and is tortuous and complex.To summarize the exploration experiences is of great significance of reference for exploratio...Exploration of the Sinian-Lower Paleozoic formations in the Sichuan Basin starts from the 1950s,and is tortuous and complex.To summarize the exploration experiences is of great significance of reference for exploration of oil and gas in deep carbonate rocks of the Sichuan Basin.Gas accumulation in the Anyue oversize gasfield is chiefly controlled by the Deyang-Anyue intra-platform rift and central Sichuan paleouplift.The intra-platform rift controls the scale hydrocarbon generation center and effective hydrocarbon plays.The Anyue gasfield is characterized by near-source hydrocarbon accumulation.The marginal zone of intra-platform rift and high part of the paleouplift control the scale distribution of favorable facies belts of reservoir development,and overlapped by paleokarstic reformation,the reservoirs are widely distributed.The intra-platform rift and paleouplift jointly control formation of the scale traps and hydrocarbon enrichment.Gas reservoir features and major controlling factors for hydrocarbon accumulation have some differences in the main play strata,such as Longwangmiao Formation,and Member 4 and Member 2 of Dengying Formation.The gas reservoir in the Longwangmiao Formation is a lithologic gas reservoir under the tectonic setting,and the inherited paleouplift is a key for reservoir formation and hydrocarbon accumulation.The gas reservoir in the Member 4 of Dengying Formation is mainly controlled by large structural-stratigraphic composite traps,and the gas reservoir in the Member 2 of Dengying Formation is the structural trap.Distribution of the large gasfields in the Dengying Formation is controlled by the intra-platform rift,near-source hydrocarbon-reservoir configuration controlled by the ancient erosion plane and stratigraphic sealing in the updip direction.For exploration and development of the Anyue gasfield,four series of technologies are developed,namely,reservoir seismic fine description technology,well logging fine evaluation technology of gas layers,fast drilling technology of complex strata,and stimulation technology for high temperature and high pressure gas layers.Technical progresses provide powerful guarantee for efficient exploration and development of the oversize gasfields.展开更多
基金Projects(41202051,41672076)supported by the National Natural Science Foundation of ChinaProject(2015CX008)supported by the Innovation-driven Plan in Central South University,China+4 种基金Project(2016JJ1022)supported by Hunan Provincial Natural Science Outstanding Youth Foundation of ChinaProject(CSUZC201601)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,ChinaProject(2014T70886)supported by the Special Program of the Postdoctoral Science Foundation of ChinaProject(2012M521721)supported by China Postdoctoral Science FoundationProject(XKRZ[2014]76)supported by the Platform of Scientific and Technological Innovation for Hunan Youth,China
文摘To reveal the occurrence state and enrichment regularity of the dispersed element indium in pyrite, the petrology,mineralogy, geochemistry, and mineral physics were researched detailedly. The results suggest that the structure of pyrite is mainlycomposed of massive structure, disseminated structure, vein structure, reticular structure, comb structure and so on. Generally, thepyrite coexists with sphalerite, marmatite, pyrrhotite, chalcopyrite, galena, and arsenopyrite. And the texture of pyrite primarilyconsists of the metasomatic texture, solid solution texture, idiomorphic?hypidiomorphic granular texture, and disseminated texture.The content of indium in pyrite ranges from 0.491×10?6 to 65.1×10?6 with an average value of 14.38×10?6. Yet, the indium content inthe Gaofeng deposit is higher than that in the Dafulou and Tongkeng deposit, showing a particularly significant supernormalenrichment. Besides, the cadmium content in pyrite is also higher than other dispersed elements, and similarly the abnormalenrichment of cadmium in the Gaofeng deposit is also very significant. An obvious positive correlation exists between In and Cd, orTl, but a negative correlation between In and Re. It is difficult to find out a positive or negative correlation between In and Ga. Theelement zinc is of great importance to the enrichment of indium, which can possibly facilitate to the migration and crystallization of dispersed element indium.
基金financially supported by a project of the Ministry of Science and Technology,SINOPEC(No.P13071)a project of the Petroleum Exploration and Production Research Institute,SINOPEC(No.YK514003).
文摘Drilling for karst hydrothermal resources in eastern China has posed challenges,including disparities between the temperature and yield of geothermal water.It is evident that relying solely on geothermal anomalies or indications of karst reservoirs is inadequate for the exploration of karst hydrothermal resources.This study seeks to elucidate the cause of geothermal sweet spots by analyzing the interplay between geothermal anomalies and karst reservoirs and the underlying geological conditions for karst hydrothermal enrichment.Key findings include:(1)the Bohai Bay Basin has been geologically favorable for the development of karst hydrothermal resources since the Mesozoic era;(2)the karst hydrothermal enrichment varies significantly between the basin’s margin and its interior.On the basin margin,the enrichment is largely driven by groundwater activity and faults,particularly where faults facilitate the upwelling of geothermal water.In contrast,within the basin’s interior,karst hydrothermal resources are predominantly influenced by buried hills and are especially enriched in areas facilitating the discharge of deep geothermal waters.
基金supported by the metallogenic regularities and prediction of glutenite type Cu-Pb-Zn deposit in Tarim west margin(201511016-1)the special mapping techniques and its application demonstration in Sareke overall-exploration area in Xinjiang(12120114081501)
文摘1 Introduction Sareke glutenite-type copper deposit is the large size copper deposit discovered in recent years,and it is located Sarekebayi intracontinental pull-apart basin in the western margin of the Tarim basin.Conglomerate of
基金The work was supported by the National Science and Technology Major Project of China(No.2016ZX05004005,2016ZX05007004).
文摘Exploration of the Sinian-Lower Paleozoic formations in the Sichuan Basin starts from the 1950s,and is tortuous and complex.To summarize the exploration experiences is of great significance of reference for exploration of oil and gas in deep carbonate rocks of the Sichuan Basin.Gas accumulation in the Anyue oversize gasfield is chiefly controlled by the Deyang-Anyue intra-platform rift and central Sichuan paleouplift.The intra-platform rift controls the scale hydrocarbon generation center and effective hydrocarbon plays.The Anyue gasfield is characterized by near-source hydrocarbon accumulation.The marginal zone of intra-platform rift and high part of the paleouplift control the scale distribution of favorable facies belts of reservoir development,and overlapped by paleokarstic reformation,the reservoirs are widely distributed.The intra-platform rift and paleouplift jointly control formation of the scale traps and hydrocarbon enrichment.Gas reservoir features and major controlling factors for hydrocarbon accumulation have some differences in the main play strata,such as Longwangmiao Formation,and Member 4 and Member 2 of Dengying Formation.The gas reservoir in the Longwangmiao Formation is a lithologic gas reservoir under the tectonic setting,and the inherited paleouplift is a key for reservoir formation and hydrocarbon accumulation.The gas reservoir in the Member 4 of Dengying Formation is mainly controlled by large structural-stratigraphic composite traps,and the gas reservoir in the Member 2 of Dengying Formation is the structural trap.Distribution of the large gasfields in the Dengying Formation is controlled by the intra-platform rift,near-source hydrocarbon-reservoir configuration controlled by the ancient erosion plane and stratigraphic sealing in the updip direction.For exploration and development of the Anyue gasfield,four series of technologies are developed,namely,reservoir seismic fine description technology,well logging fine evaluation technology of gas layers,fast drilling technology of complex strata,and stimulation technology for high temperature and high pressure gas layers.Technical progresses provide powerful guarantee for efficient exploration and development of the oversize gasfields.