期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Intelligent Diagnosis Method for Typical Co-frequency Vibration Faults of Rotating Machinery Based on SAE and Ensembled ResNet-SVM
1
作者 Xiancheng Zhang Xin Pan +1 位作者 Hao Zeng Haofu Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS 2024年第4期215-230,共16页
Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this pa... Intelligent fault diagnosis is an important method in rotating machinery fault diagnosis and equipment health management.To deal with co-frequency vibration faults,a type of typical fault in rotating machinery,this paper proposes a fault diagnosis method based on the stacked autoencoder(SAE)and ensembled ResNet-SVM.Furthermore,the time-and frequency-domain features of several co-frequency vibration faults are summarized based on the mechanism analysis and calculated using actual vibration data.To realize and validate the high-precision diagnosis method of rotating equipment with co-frequency faults proposed in this study,the following three criteria are required:First,to improve the effectiveness and robustness of the ensembled model and the sliding window using data augmentation,adding noise,autoencoder(AE)and SAE methods are analyzed in terms of principle and practical effects.Second,ResNet is used as the feature extractor for the ensembled ResNet-SVM model.Feature extraction is carried out twice,and the extracted co-frequency fault features are more comprehensive.Finally,the data augmentation method and ensemble ResNet-SVM are combined for fault diagnosis and compared with other methods.The experimental results show that the accuracy of the proposed method can exceed 99.9%. 展开更多
关键词 Co-frequency vribation Data argumentation ensembeled ResNet-SVM High precision fault diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部