期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The entanglement of deterministic aperiodic quantum walks
1
作者 刘婷婷 胡亚运 +2 位作者 赵静 钟鸣 童培庆 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第12期77-84,共8页
We study the entanglement between the internal(coin)and the external(position)degrees of freedom in the dynamic and the static deterministic aperiodic quantum walks(QWs).For the dynamic(static)aperiodic QWs,the coin d... We study the entanglement between the internal(coin)and the external(position)degrees of freedom in the dynamic and the static deterministic aperiodic quantum walks(QWs).For the dynamic(static)aperiodic QWs,the coin depends on the time(position)and takes two coins C(α)and C(β)arranged in the two classes of generalized Fibonacci(GF)and the Thue–Morse(TM)sequences.We found that for the dynamic QWs,the entanglement of three kinds of the aperiodic QWs are close to the maximal value,which are all much larger than that of the homogeneous QWs.Further,the first class of GF(1st GF)QWs can achieve the maximum entangled state,which is similar to that of the dynamic disordered QWs.And the entanglement of 1st GF QWs is greater than that of the TM QWs,being followed closely by the entanglement of the second class of GF(2nd GF)QWs.For the static QWs,the entanglement of three kinds of the aperiodic QWs are also close to the maximal value and 1st GF QWs can achieve the maximum entangled state.The entanglement of the TM QWs is between1st GF QWs and 2nd GF QWs.However,the entanglement of the static disordered QWs is less than that of three kinds of the aperiodic QWs.This is different from those of the dynamic QWs.From these results,we can conclude that the dynamic and static 1st GF QWs can also be considered as maximal entanglement generators. 展开更多
关键词 quantum walks quantum entanglement aperiodic entanglement production
下载PDF
Quantum photonic network on chip 被引量:2
2
作者 张群永 徐平 祝世宁 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期59-73,共15页
We provide an overview of quantum photonic network on chip. We begin from the discussion of the pros and cons of several material platforms for engineering quantum photonic chips. Then we introduce and analyze the bas... We provide an overview of quantum photonic network on chip. We begin from the discussion of the pros and cons of several material platforms for engineering quantum photonic chips. Then we introduce and analyze the basic building blocks and functional units of quantum photonic integrated circuits. In the main part of this review, we focus on the generation and manipulation of quantum states of light on chip and are particularly interested in some applications of advanced integrated circuits with different functionalities for quantum information processing, including quantum communication, quantum computing, and quantum simulation. We emphasize that developing fully integrated quantum photonic chip which contains sources of quantum light, integrate circuits, modulators, quantum storage, and detectors are promising approaches for future quantum photonic technologies. Recent achievements in the large scale photonic chips for linear optical computing are also included. Finally, we illustrate the challenges toward high performance quantum information processing devices and conclude with promising perspectives in this field. 展开更多
关键词 quantum photonic chip entanglement production and manipulation quantum communication quantum computing
下载PDF
Mesoscopic entangled coherent states implemented with a circuit quantum electrodynamics system
3
作者 赵英燕 姜年权 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期147-151,共5页
We show a scheme to generate entangled coherent states in a circuit quantum electrodynamics system, which con- sists of a nanomechanical resonator, a superconducting Cooper-pair box (CPB), and a superconducting tran... We show a scheme to generate entangled coherent states in a circuit quantum electrodynamics system, which con- sists of a nanomechanical resonator, a superconducting Cooper-pair box (CPB), and a superconducting transmission line resonator. In the system, the CPB plays the role of a nonlinear medium and can be conveniently controlled by a gate volt- age including direct-current and alternating-current components. The scheme provides a powerful tool for preparing the multipartite mesoscopic entangled coherent states. 展开更多
关键词 entanglement production and manipulation superconducting devices
下载PDF
Remote preparation of atomic and field cluster states from a pair of tri-partite GHZ states
4
作者 Ashfaq H.Khosa Rameez-ul-Islam Farhan Saif 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第4期69-76,共8页
We propose two simple and resource-economical schemes for remote preparation of four-partite atomic as well as cavity field cluster states. In the case of atomic state generation, we utilize simultaneous resonant and ... We propose two simple and resource-economical schemes for remote preparation of four-partite atomic as well as cavity field cluster states. In the case of atomic state generation, we utilize simultaneous resonant and dispersive interactions of the two two-level atoms at the preparation station. Atoms involved in these interactions are individually pair-wise entangled into two different tri-partite GHZ states. After interaction, the passage of the atoms through a Ramsey zone and their subsequent detection completes the protocol. However, for field state generation we first copy the quantum information in the cavities to the atoms by resonant interactions and then adapt the same method as in the case of atomic state generation. The method can be generalised to remotely generate any arbitrary graph states in a straightforward manner. 展开更多
关键词 quantum information entanglement production cavity quantum electrodynamics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部