Firstly, the water-quality characteristics of intestinal lavage wastewater and enzymolysis wastewater from the typical heparin sodium pro- ductive process were analyzed, and then the segregation treatment was applied ...Firstly, the water-quality characteristics of intestinal lavage wastewater and enzymolysis wastewater from the typical heparin sodium pro- ductive process were analyzed, and then the segregation treatment was applied in the treatment of enteric coating and heparin sodium manufacturing wastewater. Finally, the treatment of the two kinds of wastewater by different methods were discussed. The results showed that, COD of enzymolysis wastewater treated by centrifugation-coagulation-Fenton reagent oxidation-adsorption process was lower than 100 mg/L, while intestinal lavage wastewater treated by coagulation-ASBR-SBR process could meet the first standard of Comprehensive Discharge Standard of Sewage (GB8978-1996) after one month of continuous operation.展开更多
Changes in structure of oral solid dosage forms(OSDF) elementally determine the drug release and its therapeutic effects.In this research,synchrotron radiation X-ray micro-computed tomography was utilized to visualize...Changes in structure of oral solid dosage forms(OSDF) elementally determine the drug release and its therapeutic effects.In this research,synchrotron radiation X-ray micro-computed tomography was utilized to visualize the 3 D structure of enteric coated pellets recovered from the gastrointestinal tract of rats.The structures of pellets in solid state and in vitro compendium media were measured.Pellets in vivo underwent morphological and structural changes which differed significantly from those in vitro compendium media.Thus,optimizations of the dissolution media were performed to mimic the appropriate in vivo conditions by introducing pepsin and glass microspheres in media.The sphericity,pellet volume,pore volume and porosity of the in vivo esomeprazole magnesium pellets in stomach for2 h were recorded 0.47,1.55 × 10^(8)μm^(3),0.44 × 10^(8)μm^(3)and 27.6%,respectively.After adding pepsin and glass microspheres,the above parameters in vitro reached to 0.44,1.64 × 10^(8)μm^(3)0.38 × 10^(8)μm^(3)and 23.0%,respectively.Omeprazole magnesium pellets behaved similarly.The structural features of pellets between in vitro media and in vivo condition were bridged successfully in terms of 3 D structures to ensure better design,characterization and quality control of advanced OSDF.展开更多
基金Supported by the Project of Practical Innovation Training Program of Undergraduates in Jiangsu Province in 2012(232)
文摘Firstly, the water-quality characteristics of intestinal lavage wastewater and enzymolysis wastewater from the typical heparin sodium pro- ductive process were analyzed, and then the segregation treatment was applied in the treatment of enteric coating and heparin sodium manufacturing wastewater. Finally, the treatment of the two kinds of wastewater by different methods were discussed. The results showed that, COD of enzymolysis wastewater treated by centrifugation-coagulation-Fenton reagent oxidation-adsorption process was lower than 100 mg/L, while intestinal lavage wastewater treated by coagulation-ASBR-SBR process could meet the first standard of Comprehensive Discharge Standard of Sewage (GB8978-1996) after one month of continuous operation.
基金financial support from National Key R&D Program of China(2020YFE0201700)Major New Drugs Innovation and Development(2017ZX09101001-005,China)+1 种基金the National Natural Science Foundation of China(81803441,81803446 and 81773645)Youth Innovation Promotion Association CAS(2018323,China)。
文摘Changes in structure of oral solid dosage forms(OSDF) elementally determine the drug release and its therapeutic effects.In this research,synchrotron radiation X-ray micro-computed tomography was utilized to visualize the 3 D structure of enteric coated pellets recovered from the gastrointestinal tract of rats.The structures of pellets in solid state and in vitro compendium media were measured.Pellets in vivo underwent morphological and structural changes which differed significantly from those in vitro compendium media.Thus,optimizations of the dissolution media were performed to mimic the appropriate in vivo conditions by introducing pepsin and glass microspheres in media.The sphericity,pellet volume,pore volume and porosity of the in vivo esomeprazole magnesium pellets in stomach for2 h were recorded 0.47,1.55 × 10^(8)μm^(3),0.44 × 10^(8)μm^(3)and 27.6%,respectively.After adding pepsin and glass microspheres,the above parameters in vitro reached to 0.44,1.64 × 10^(8)μm^(3)0.38 × 10^(8)μm^(3)and 23.0%,respectively.Omeprazole magnesium pellets behaved similarly.The structural features of pellets between in vitro media and in vivo condition were bridged successfully in terms of 3 D structures to ensure better design,characterization and quality control of advanced OSDF.