The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its...The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its elevated calcium sulfate content,ABR exhibits considerable promise for industrial applications.This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement(SSC),offering an innovative binder for cemented paste backfill(CPB).Thermal treatment at varying temperatures of 150,350,600,and 800℃ was employed to modify ABR’s performance.The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR.Subsequently,the hydration characteristics of SSC utilizing ABR,with or without thermal treatment,were studied,encompassing reaction kinetics,setting time,strength development,and microstructure.The findings revealed that thermal treatment changed the calcium sulfate structure in ABR,consequently impacting the resultant sample performance.Notably,calcination at 600℃ demonstrated optimal modification effects on both early and long-term strength attributes.This enhanced performance can be attributed to the augmented formation of reaction products and a densified micro-structure.Furthermore,the thermal treatment elicited modifications in the chemical As fractions within ABR,with limited impact on the As immobilization capacity of the prepared binders.展开更多
Lagoons are ecosystems for biodiversity and the livelihoods of coastal communities. The main objective of the study was to analyze the variability of arsenic concentrations in gastropods and bivalves in the Aby and Te...Lagoons are ecosystems for biodiversity and the livelihoods of coastal communities. The main objective of the study was to analyze the variability of arsenic concentrations in gastropods and bivalves in the Aby and Tendo lagoons, taking into account spatial, seasonal and hydrological variations. The study was carried out in four stages spread over two successive hydroclimatic cycles, including two seasons during the rainy season and two more during the dry season. The samples were taken in two areas of the Aby and Tendo lagoons. Arsenic levels were measured by ICP-MS. The results showed that mean arsenic concentrations in the muscles of organisms in Aby Lagoon ranged from 0.01 to 1.26 μg As/g, with a mean and median of 0.17 and 0.06 μg As/g, respectively. Fish had the highest levels of arsenic, followed by crustaceans, while molluscs and plants had lower and comparable concentrations of As. Arsenic concentrations in tilapia and jawbones varied significantly between sites and seasons, with higher concentrations at Tendo and during the rainy season. Arsenic concentrations in gastropods and bivalves were significantly higher than those of other species, with averages of 0.74 and 1.03 mg As/kg, respectively.展开更多
Arsenic compounds are widely used for the therapeutic intervention of multiple diseases.Ancient pharmacologists discovered the medicinal utility of these highly toxic substances,and modern pharmacologists have further...Arsenic compounds are widely used for the therapeutic intervention of multiple diseases.Ancient pharmacologists discovered the medicinal utility of these highly toxic substances,and modern pharmacologists have further recognized the specific active ingredients in human diseases.In particular,Arsenic trioxide(ATO),as a main component,has therapeutic effects on various tumors(including leukemia,hepatocellular carcinoma,lung cancer,etc.).However,its toxicity limits its efficacy,and controlling the toxicity has been an important issue.Interestingly,recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation,which may determine their toxicity and therapeutic efficacy.Here,we summarize the arsenic compoundsregulating phase separation and membraneless organelles formation.We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds,highlighting potential mechanisms underlying the clinical application of arsenic compounds.展开更多
Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roastin...Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.展开更多
Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ...Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ATO, following by the cell viability was detected by CCK8 assay. Then, intracellular reactive oxygen species (ROS) levels, lipid peroxide (MDA) contents and superoxide dismutase (SOD) activity were measured with a fluorescence probe method and colorimetric assay, respectively. The apoptosis rate and morphology was detected and observed with hoechst 33,258 staining assay. The mRNA levels and protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were measured by real-time fluorescence quantitative polymerase chain reaction and protein immunoblotting assay, respectively. Our results indicated that Co-treatment with ME and ATO exacerbated the cell viability decreasing reduced by ATO, while the addition of ME after ATO treatment effectively promote the recovery of ATO reduced survival rates. The ATO group increased apoptosis (P P β-cells by modulating the activation of the Nrf2 signaling pathway.展开更多
This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1...This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1)Groundwater samples with high arsenic and fluoride concentrations collected from the loess area and the terraces of the Weihe River accounted for 26%and 30%,respectively,of the total samples,with primary hydrochemical type identified as HCO_(3)-Na.The karst and sand areas exhibit relatively high groundwater quality,serving as preferred sources for water supply.It is recommended that local governments fully harness groundwater in these areas;(2)groundwater with high arsenic and fluoride concentrations in the loess area and the alluvial plain of rivers in Dali County is primarily distributed within the Guanzhong Basin,which represents the drainage zone of groundwater;(3)arsenic and fluoride in groundwater originate principally from natural and anthropogenic sources;(4)the human health risk assessments reveal that long-term intake of groundwater with high arsenic and fluoride concentrations pose cancer or non-cancer risks,which are more serious to kids compared to adults.This study provides a theoretical basis for the prevention and treatment of groundwater with high arsenic and fluoride concentrations in loess areas.展开更多
This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition...This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.展开更多
A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching...A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching solution can be further precipitated as a form of scorodite crystalline(FeAsO4·2H2O). In the precipitating arsenic reaction, in which ferrous ions were oxidized by air gas, the effects of acidity(p H), reaction temperature, air flow rate, initial concentration of arsenic and initial molar ratio of Fe(II) to As(V) on arsenic precipitation were investigated. The results showed that sufficiently stable crystal scorodite could be achieved under the condition of initial arsenic concentration of 10 g/L, pH 3.0-4.0, Fe/As molar ratio of 1.5, the temperature of 80-95 °C, and the air flow rate higher than 120 L/h. Under the optimal condition, more than 78% of arsenic could be precipitated as a form of scorodite crystalline. The As leaching concentration of the precipitates was less than 2.0 mg/L and the precipitates may be considered to be safe for disposal.展开更多
Arsenic is selectively extracted from high-arsenic dust by NaOH-Na2S alkaline leaching process. In the leaching arsenic process, the effects of alkali-to-dust ratio, sodium sulfide addition, leaching temperature, leac...Arsenic is selectively extracted from high-arsenic dust by NaOH-Na2S alkaline leaching process. In the leaching arsenic process, the effects of alkali-to-dust ratio, sodium sulfide addition, leaching temperature, leaching time and liquid-to-solid ratio on metals leaching efficiencies were investigated. The results show that the arsenic can be effectively separated from other metals under the optimum conditions of alkali/dust mass ratio of 0.5, sodium sulfide addition of 0.25 g/g, leaching temperature of 90 ℃, leaching time of 2 h, and liquid-to-solid ratio of 5:1 (mL/g). Under these conditions, the average leaching efficiencies of arsenic, antimony, lead, tin and zinc are 92.75%, 11.68%, 0.31%, 29.75% and 36.85%, respectively. The NaOH-Na2S alkaline leaching process provides a simple and highly efficient way to remove arsenic from high-arsenic dust, leaving residue as a suitable lead resource.展开更多
The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main p...The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main phase of As is As2O3 in type Ⅰ, zinc arsenite (Zn(AsO2)2) in type Ⅱ and lead arsenate (Pb(As206), Pb4As2O9) in type Ⅲ, respectively. Selective leaching of zinc oxide of type Ⅱ was carried out. The leaching rate of As kept at 65%-70% with 30 g/L NaOH and L/S ratio of 3 at 20 ℃ for 1 h, while the losses of Pb and Zn were both below 1%.展开更多
The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was ...The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic.The leaching experiments were conducted in the alkaline aqueous medium,with bubbling of oxygen into the solution,and the optimal conditions for leaching arsenic were determined.The results showed that the extraction rate of arsenic was maximized at 99.10%under the optimal conditions of temperature 140 ℃,NaOH concentration 150 g/L,oxygen partial pressure 0.5 MPa,and a liquid-to-solid ratio 5:1.Based on the solubilities of As2O5,ZnO and PbO in NaOH solution at 25 ℃,a method for the separation of As in the form of sodium arsenate salt from the arsenic-rich leachate via cooling crystallization was established,and the reaction medium could be fully recycled.The crystallization rate was confirmed to reach 88.9%(calculated on the basis of Na3AsO4) upon a direct cooling of the hot leachate down to room temperature.On the basis of redox potentials,the sodium arsenate solution could be further reduced by sulfur dioxide(SO2) gas to arsenite,at a reduction yield of 92%under the suitable conditions.Arsenic trioxide with regular octahedron shape could be prepared successfully from the reduced solution,and further recycled to the purification process to purify the zinc sulfate solution.Also,sodium arsenite solution obtained after the reduction of arsenate could be directly used to purify the zinc sulfate solution.Therefore,the technical scheme of alkaline leaching with pressured oxygen,cooling crystallization,arsenate reduction by SO2 gas,and arsenic trioxide preparation,provides an attractive approach to realize the resource utilization of arsenic-containing cobalt and nickel slag.展开更多
The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the ...The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the effect of concentration and co-crystallization was investigated in copper electrolyte. The results indicate that reduction rate of arsenic (V) decreases with increasing temperature and H2SO4 concentration, but increases with increasing SO2 flow rate and reaction time, and it can reach 92% under appropriate conditions that reaction temperature is 65 °C, H2SO4 concentration is 203 g/L, CuSO4 concentration is 80 g/L, reaction time is 2 h and SO2 gas flow rate is 200 mL/min. To remove arsenic in the copper electrolyte, arsenic (V) is reduced to trivalence under the appropriate conditions, the copper electrolyte is concentrated till H2SO4 concentration reaches 645 g/L, and then the removal rates of As, Cu, Sb and Bi reach 83.9%, 87.1%, 21.0% and 84.7%. The XRD analysis shows that crystallized product obtained contains As2O3 and CuSO4·5H2O.展开更多
[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by c...[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.展开更多
The effects of different arsenic (As) treatments on spatial pattern of radial oxygen loss (ROL), iron (Fe) plaque formation and As accumulation in rice were investigated using three rice genotypes, planted under...The effects of different arsenic (As) treatments on spatial pattern of radial oxygen loss (ROL), iron (Fe) plaque formation and As accumulation in rice were investigated using three rice genotypes, planted under greenhouse conditions. Arsenic was applied to soil at 50 and 100 mg/kg, with untreated soil used as a control having an average As concentration of 8.5 mg/kg. It was demonstrated that the ratio of ROL in root tips to that at the root base slightly decreased with increasing As concentration, suggesting that the spatial ROL patterns in these groups may be shifted from the “tight” barrier towards the “partial” barrier form. Furthermore, increasing As concentration led to a increase in Fe plaque formation on root surfaces. In addition, root As concentrations of genotypes in 50 and 100 mg/kg As treatments were significantly higher than that of control treatment (P〈0.05). Grain As concentration of genotype Nanyangzhan (with lower ROL) was significantly higher (P〈0.05) than that of genotype CNT87059-3 with higher ROL.展开更多
The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observa...The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.展开更多
Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter ...Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter was constructed by reporter gene system and was transiently transfected into VSMCs and THP-1 in vitro. The promoter activity was tested by luciferase activity with or without LPS and Ang Ⅱ stimulation, before and after different dosage of As2O3 treatment. Results 1. TNF-α promoter effectively expressed in VSMCs and THP-1 compared with CMV promoter (58.3% and 80.9%, respectively). Both LPS and Ang Ⅱ significantly up-regulated TNF-α promoter activity (P〈0.05). 2. As2O3 significantly inhibited, both intact and LPS/Ang Ⅱ stimulated promoter activity, in a dose dependent manner (P〈0.05), and in both cell type. Conclusion These results manifested that, the inhibition effect of As2O3 on the activity of human TNF-α promoter indicated its potential inhibition on pro-inflammatory cytokine genes expression at transcriptional level and its potential anti-inflammatory property in the cardiovascular system.展开更多
Objective: To study synergistic effect with Ascorbic acid(AA) on arsenic trioxide inducing human Hepatocarcinoma cell apoptosis, and provide theoretical basis for promoting human Hepatocarcinoma cell apoptosis induced...Objective: To study synergistic effect with Ascorbic acid(AA) on arsenic trioxide inducing human Hepatocarcinoma cell apoptosis, and provide theoretical basis for promoting human Hepatocarcinoma cell apoptosis induced by arsenic trioxide(AT). Methods: Human Hepatocarcinoma cell line BEL-7402 being cultured in vitro, the effect of AT and (or) AA on its growth inhibition and its two intracellular signal molecules was evaluated separately using MTT and Western blot. Results: AT at a few μmol/L concentration could suppress abnormal proliferation of human hepatocarcinoma cells, and initiate their apoptosis by activation of caspase-3, and activate extracellular-signal regulated kinases (ERKs), which were dependent on the dosage of AT conspicuously. The effect of AA on BEL-7402 was not significant; However, AA could effectively enhance AT-induced hepatocarcinoma cell apoptosis and lesion severity through activation of caspase-3 but not ERKs. Conclusion: Caspase-3 and ERKs proteins could involve in arsenic-induced hepatocarcinoma cell apoptosis and differentiation respectively as intracellular signaling molecules; The effect between AT and AA on hepatocarcinoma is synergistic, which further inhibits cell growth and induces apoptosis in human hepatocarcinoma cells through activation of caspase-3 but not ERKs.展开更多
OBJECTIVE To study the anti-tumor effect of arsenic trioxide on the HepG2 human hepatocellular carcinoma cell line, and to explore its mechanism of action. METHODS The MTT assay was used to determine the inhibitory ef...OBJECTIVE To study the anti-tumor effect of arsenic trioxide on the HepG2 human hepatocellular carcinoma cell line, and to explore its mechanism of action. METHODS The MTT assay was used to determine the inhibitory effect of As2O3 on HepG2 cells at various As2O3 concentrations. The expression of p-JNK, caspase-3 and PARP was detected by Western blots. RESULTS As2O3 markedly inhibited the growth of the HepG2 cells and induced apoptosis. The results of Western blot analysis showed that the As2O3-induced apoptosis was accompanied by caspase-3 and PARP activation. p-JNK was detected at 10 min following As2O3 treatment, and preceded to peak at 20 min, and decreased by 30 min. The total protein content did not obviously change. The activation of JNK occurred prior to cell apoptosis. SP600125, a JNK inhibitor, suppressed the As2O3-induced activation of caspase-3 and PARP cleavage. CONCLUSION As2O3 inhibits the proliferation of human HepG2 hepatocellular carcinoma cells by inducing apoptosis in vitro. As2O3-induced apoptosis is accessed through the caspase-3 pathway. The JNK signal-transduction pathway and caspase-3 are involved upstream in the As2O3 induced HepG2 apoptotic response.展开更多
Phosphorus (P) deficiency is thought to exacerbate the arsenic (As) phytotoxicity in paddy rice. The experiments were conducted to investigate the effects of external phosphate supply on As accumulation in rice an...Phosphorus (P) deficiency is thought to exacerbate the arsenic (As) phytotoxicity in paddy rice. The experiments were conducted to investigate the effects of external phosphate supply on As accumulation in rice and its toxicity under phosphate deficiency conditions. Rice seedlings pretreated with a phosphorus deficient nutrient solution (-P) for 14 d accumulated more As than those pretreated with a normal phosphorus supply nutrient solution (+P). Rice protreated with -P showed As toxicity symptoms after being exposed to 50 μmol/L arsenate for 4 h, while +P rice did not show any toxicity symptoms. Arsenic toxicity symptoms can be alleviated by increasing external P concentrations. The arsenate uptake rate and accumulation corresponded with the As toxicity in rice plants. Arsenic concentrations in rice roots decreased with increasing external phosphate concentrations. The lowest As accumulation and the highest P accumulation were found when the external P concentration reached 100μmol/L. In short, P deficiency increased the sensitivity of rice to arsenate and increasing of external phosphate supply could alleviate As toxicity.展开更多
AIM To study the effects of arsenic trioxide andHCPT on different degrees of differentiated gastriccancer cells(SGC-7901,MKN-45,MKN-28)withrespect to both cytotoxicity and induction ofapoptosis in vitro.METHODS The ...AIM To study the effects of arsenic trioxide andHCPT on different degrees of differentiated gastriccancer cells(SGC-7901,MKN-45,MKN-28)withrespect to both cytotoxicity and induction ofapoptosis in vitro.METHODS The cytotoxicity of As<sub>2</sub>O<sub>3</sub> and HCPTon gastric cancer cells was determined by MTTassay.Morphologic changes of apoptosis ofgastric cancer cells were observed by lightmicroscopy and transmission electron microscopy.Apoptosis and cell cycle changes of gastric cancercells induced by HCPT and As<sub>2</sub>O<sub>3</sub> were investigatedby TUNEL method and flow cytometry.RESULTS As<sub>2</sub>O<sub>3</sub> and HCPT had remarkablecytotoxic effects on different degrees ofdifferentiated gastric cancer cells.The IC<sub>50</sub>ofAs<sub>2</sub>O<sub>3</sub> on well differentiated gastric cancer cellMKN-28,moderately differentiated gastric cancercell SGC-7901,and poorly differentiated gastriccancer cell MKN-28 were 8.91 μmol/L,10.57μmol/L,and 11.65 μmol/L,respectively.The IC<sub>50</sub>of HCPT on MKN-28,SGC-7901,and MKN-45 were9.35 mg/L,10.21 mg/L,and 12.63 mg/Lrespectively after 48 h treatment.After 12 h ofexposure to both drugs,gastric cancer cellsexhibited morphologic features of apoptosis,including cell shrinkage,nuclear condensation, and formation of apoptotic bodies.A typicalsubdiploid peak before G<sub>0</sub>/G<sub>1</sub> phase was observedby flow cytometry.The apoptotic rates of SGC-7901,MKN-45,and MKN-28 were 13.84%,22.52%,and 9.68%,respectively after 48 hexposure to 10 μmol/L As<sub>2</sub>O<sub>3</sub>.The apoptotic ratesof SGC-7901,MKN-45,and MKN-28 were 21.88%,12.35%,and 30.26%,respectively after 48 hexposure to 10 mg/L HCPT.The apoptotic indicewere 7%-15% as assessed by TUNEL method.The effect of As<sub>2</sub>O<sub>3</sub> on SGC-7901 showedremarkable cell cycle specificity,which inducedcell death in G<sub>1</sub> phase,and blocked G<sub>2</sub>/M phase.HCPT also showed a remarkable cell cyclespecificity,by inducing cell death and apoptosis inG<sub>1</sub> phase and arrest of proliferation at S phase.CONCLUSION As<sub>2</sub>O<sub>3</sub> and HCPT exhibitsignificant cytotoxicity on gastric cancer cells byinduction of apoptosis.As<sub>2</sub>O<sub>3</sub> and HCPT mighthave a promising prospect in the treatment ofgastric cancer,which needs to be further studied.展开更多
基金supported from the National Natural Science Foundation of China(No.52304148)the Youth Project of Shanxi Basic Research Program,China(No.202203021212262).
文摘The substantial arsenic(As)content present in arsenic-containing bio-leaching residue(ABR)presents noteworthy environ-mental challenges attributable to its inherent instability and susceptibility to leaching.Given its elevated calcium sulfate content,ABR exhibits considerable promise for industrial applications.This study delved into the feasibility of utilizing ABR as a source of sulfates for producing super sulfated cement(SSC),offering an innovative binder for cemented paste backfill(CPB).Thermal treatment at varying temperatures of 150,350,600,and 800℃ was employed to modify ABR’s performance.The investigation encompassed the examination of phase transformations and alterations in the chemical composition of As within ABR.Subsequently,the hydration characteristics of SSC utilizing ABR,with or without thermal treatment,were studied,encompassing reaction kinetics,setting time,strength development,and microstructure.The findings revealed that thermal treatment changed the calcium sulfate structure in ABR,consequently impacting the resultant sample performance.Notably,calcination at 600℃ demonstrated optimal modification effects on both early and long-term strength attributes.This enhanced performance can be attributed to the augmented formation of reaction products and a densified micro-structure.Furthermore,the thermal treatment elicited modifications in the chemical As fractions within ABR,with limited impact on the As immobilization capacity of the prepared binders.
文摘Lagoons are ecosystems for biodiversity and the livelihoods of coastal communities. The main objective of the study was to analyze the variability of arsenic concentrations in gastropods and bivalves in the Aby and Tendo lagoons, taking into account spatial, seasonal and hydrological variations. The study was carried out in four stages spread over two successive hydroclimatic cycles, including two seasons during the rainy season and two more during the dry season. The samples were taken in two areas of the Aby and Tendo lagoons. Arsenic levels were measured by ICP-MS. The results showed that mean arsenic concentrations in the muscles of organisms in Aby Lagoon ranged from 0.01 to 1.26 μg As/g, with a mean and median of 0.17 and 0.06 μg As/g, respectively. Fish had the highest levels of arsenic, followed by crustaceans, while molluscs and plants had lower and comparable concentrations of As. Arsenic concentrations in tilapia and jawbones varied significantly between sites and seasons, with higher concentrations at Tendo and during the rainy season. Arsenic concentrations in gastropods and bivalves were significantly higher than those of other species, with averages of 0.74 and 1.03 mg As/kg, respectively.
基金the financial support from the National Natural Science Foundation of China(Grant Nos.:31571493,81741043,31871395,and 32170841).
文摘Arsenic compounds are widely used for the therapeutic intervention of multiple diseases.Ancient pharmacologists discovered the medicinal utility of these highly toxic substances,and modern pharmacologists have further recognized the specific active ingredients in human diseases.In particular,Arsenic trioxide(ATO),as a main component,has therapeutic effects on various tumors(including leukemia,hepatocellular carcinoma,lung cancer,etc.).However,its toxicity limits its efficacy,and controlling the toxicity has been an important issue.Interestingly,recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation,which may determine their toxicity and therapeutic efficacy.Here,we summarize the arsenic compoundsregulating phase separation and membraneless organelles formation.We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds,highlighting potential mechanisms underlying the clinical application of arsenic compounds.
基金Project(52174384)supported by the National Natural Science Foundation of ChinaProject(LZB2021003)supported by Fundamental Research Funds for the Central Universities,China。
文摘Massive amounts of low-grade tin middlings have been produced from tin tailings,in which arsenic and tin are worthy to be recycled.Owing to high sulfur content in these tin middlings,a novel self-sulfurization roasting was proposed to transform,separate and recover arsenic and tin in this research.There was no extra curing agent to be added,which decreased the formation of pollutant S-containing gas.The self-sulfurization process involved a two-stage roasting of reduction followed by sulfurization.First in reduction roasting,FeAsS decomposed to FeS and As and the As then transformed to As_(4)(g)and As_(4)S_(4)(g),via which the arsenic was separated and recovered.The arsenic content in the first residue could be decreased to 0.72 wt.%.Accompanied with it,the FeS was firstly oxidized to Fe_(1−x)S and then to SO_(2)(g)by the coexisted Fe_(2)O_(3),and finally reduced and combined with the independent Fe_(2)O_(3)to form Fe_(1−x)S.In the followed sulfurization roasting,the Fe_(1−x)S sulfurized SnO_(2)to SnS(g),due to which tin could be recovered and its content in the second residue decreased to 0.01 wt.%.This study provided an efficient method to separate and recover arsenic and tin from low-grade tin middlings.
文摘Roles of Marigold extracts (ME) on arsenic trioxide (ATO)-induced oxidative damage to pancreatic β-cells need to be further elucidated. In this study, NIT-1 cells were treated with different concentrations of and/or ATO, following by the cell viability was detected by CCK8 assay. Then, intracellular reactive oxygen species (ROS) levels, lipid peroxide (MDA) contents and superoxide dismutase (SOD) activity were measured with a fluorescence probe method and colorimetric assay, respectively. The apoptosis rate and morphology was detected and observed with hoechst 33,258 staining assay. The mRNA levels and protein expressions of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were measured by real-time fluorescence quantitative polymerase chain reaction and protein immunoblotting assay, respectively. Our results indicated that Co-treatment with ME and ATO exacerbated the cell viability decreasing reduced by ATO, while the addition of ME after ATO treatment effectively promote the recovery of ATO reduced survival rates. The ATO group increased apoptosis (P P β-cells by modulating the activation of the Nrf2 signaling pathway.
基金funded by the ministry-province cooperation-based pilot project entitled A Technological System for Ecological Remediation Evaluation of Open-Pit Mines initiated by the Ministry of Natural Resources in 2023(2023-03)survey projects of the Land and Resources Investigation Program([2023]06-03-04,1212010634713)a key R&D projects of Shaanxi Province in 2023(2023ZDLSF-63)。
文摘This study aims to reveal the occurrence and origin of typical groundwater with high arsenic and fluoride concentrations in the loess area of the Guanzhong Basin—a Neogene faulted basin.Key findings are as follows:(1)Groundwater samples with high arsenic and fluoride concentrations collected from the loess area and the terraces of the Weihe River accounted for 26%and 30%,respectively,of the total samples,with primary hydrochemical type identified as HCO_(3)-Na.The karst and sand areas exhibit relatively high groundwater quality,serving as preferred sources for water supply.It is recommended that local governments fully harness groundwater in these areas;(2)groundwater with high arsenic and fluoride concentrations in the loess area and the alluvial plain of rivers in Dali County is primarily distributed within the Guanzhong Basin,which represents the drainage zone of groundwater;(3)arsenic and fluoride in groundwater originate principally from natural and anthropogenic sources;(4)the human health risk assessments reveal that long-term intake of groundwater with high arsenic and fluoride concentrations pose cancer or non-cancer risks,which are more serious to kids compared to adults.This study provides a theoretical basis for the prevention and treatment of groundwater with high arsenic and fluoride concentrations in loess areas.
文摘This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.
基金Projects(51304251,51374237)supported by the National Natural Science Foundation of ChinaProject(201509050)supported by Special Program on Environmental Protection for Public Welfare,ChinaProjects(2012FJ1010,2014FJ1011)supported by the Key Projects of Science and Technology of Hunan Province,China
文摘A process was proposed for removing and stabilizing arsenic(As) from anode slime. The anode slime with high arsenic concentration was pretreated by circular alkaline leaching process. Then, the arsenic in the leaching solution can be further precipitated as a form of scorodite crystalline(FeAsO4·2H2O). In the precipitating arsenic reaction, in which ferrous ions were oxidized by air gas, the effects of acidity(p H), reaction temperature, air flow rate, initial concentration of arsenic and initial molar ratio of Fe(II) to As(V) on arsenic precipitation were investigated. The results showed that sufficiently stable crystal scorodite could be achieved under the condition of initial arsenic concentration of 10 g/L, pH 3.0-4.0, Fe/As molar ratio of 1.5, the temperature of 80-95 °C, and the air flow rate higher than 120 L/h. Under the optimal condition, more than 78% of arsenic could be precipitated as a form of scorodite crystalline. The As leaching concentration of the precipitates was less than 2.0 mg/L and the precipitates may be considered to be safe for disposal.
基金Project(2012AA04022)supported by the Scientific Research and Technology Development Project of Guangxi,China
文摘Arsenic is selectively extracted from high-arsenic dust by NaOH-Na2S alkaline leaching process. In the leaching arsenic process, the effects of alkali-to-dust ratio, sodium sulfide addition, leaching temperature, leaching time and liquid-to-solid ratio on metals leaching efficiencies were investigated. The results show that the arsenic can be effectively separated from other metals under the optimum conditions of alkali/dust mass ratio of 0.5, sodium sulfide addition of 0.25 g/g, leaching temperature of 90 ℃, leaching time of 2 h, and liquid-to-solid ratio of 5:1 (mL/g). Under these conditions, the average leaching efficiencies of arsenic, antimony, lead, tin and zinc are 92.75%, 11.68%, 0.31%, 29.75% and 36.85%, respectively. The NaOH-Na2S alkaline leaching process provides a simple and highly efficient way to remove arsenic from high-arsenic dust, leaving residue as a suitable lead resource.
基金Project (50874121) supported by the National Natural Science Foundation of China
文摘The species of arsenic in secondary zinc oxide generated from fuming furnace were investigated. The results revealed that there are mainly three types of secondary zinc oxide based on three arsenic species. The main phase of As is As2O3 in type Ⅰ, zinc arsenite (Zn(AsO2)2) in type Ⅱ and lead arsenate (Pb(As206), Pb4As2O9) in type Ⅲ, respectively. Selective leaching of zinc oxide of type Ⅱ was carried out. The leaching rate of As kept at 65%-70% with 30 g/L NaOH and L/S ratio of 3 at 20 ℃ for 1 h, while the losses of Pb and Zn were both below 1%.
基金Project (2012BAC12B01) supported by the National Key Technologies R&D Program of ChinaProject (2012FJ1010) supported by Science and Technology Major Project of Hunan Province,China
文摘The arsenic extraction from the arsenic-containing cobalt and nickel slag,which came from the purification process of zinc sulfate solution in a zinc smelting factory,was investigated.The alkaline leaching method was proposed according to the mode of occurrence of arsenic in the slag and its amphoteric characteristic.The leaching experiments were conducted in the alkaline aqueous medium,with bubbling of oxygen into the solution,and the optimal conditions for leaching arsenic were determined.The results showed that the extraction rate of arsenic was maximized at 99.10%under the optimal conditions of temperature 140 ℃,NaOH concentration 150 g/L,oxygen partial pressure 0.5 MPa,and a liquid-to-solid ratio 5:1.Based on the solubilities of As2O5,ZnO and PbO in NaOH solution at 25 ℃,a method for the separation of As in the form of sodium arsenate salt from the arsenic-rich leachate via cooling crystallization was established,and the reaction medium could be fully recycled.The crystallization rate was confirmed to reach 88.9%(calculated on the basis of Na3AsO4) upon a direct cooling of the hot leachate down to room temperature.On the basis of redox potentials,the sodium arsenate solution could be further reduced by sulfur dioxide(SO2) gas to arsenite,at a reduction yield of 92%under the suitable conditions.Arsenic trioxide with regular octahedron shape could be prepared successfully from the reduced solution,and further recycled to the purification process to purify the zinc sulfate solution.Also,sodium arsenite solution obtained after the reduction of arsenate could be directly used to purify the zinc sulfate solution.Therefore,the technical scheme of alkaline leaching with pressured oxygen,cooling crystallization,arsenate reduction by SO2 gas,and arsenic trioxide preparation,provides an attractive approach to realize the resource utilization of arsenic-containing cobalt and nickel slag.
文摘The influences of temperature, H2SO4 concentration, CuSO4 concentration, reaction time and SO2 flow rate on the reduction of arsenic(V) with SO2 were studied and the deposition behavior of arsenic (III) under the effect of concentration and co-crystallization was investigated in copper electrolyte. The results indicate that reduction rate of arsenic (V) decreases with increasing temperature and H2SO4 concentration, but increases with increasing SO2 flow rate and reaction time, and it can reach 92% under appropriate conditions that reaction temperature is 65 °C, H2SO4 concentration is 203 g/L, CuSO4 concentration is 80 g/L, reaction time is 2 h and SO2 gas flow rate is 200 mL/min. To remove arsenic in the copper electrolyte, arsenic (V) is reduced to trivalence under the appropriate conditions, the copper electrolyte is concentrated till H2SO4 concentration reaches 645 g/L, and then the removal rates of As, Cu, Sb and Bi reach 83.9%, 87.1%, 21.0% and 84.7%. The XRD analysis shows that crystallized product obtained contains As2O3 and CuSO4·5H2O.
基金Supported by Key Fund of Guangxi Academy of Agricultural Sciences(2013YZ07)~~
文摘[Objective] The aim was to develop a rapid, simple method for determina- tion of arsenic and mercury in soil samples by atomic fluorescence spectrometry. [Method] The method for determination of As and Hg in soil by combined atomic fluorescence spectrometry and microwave digestion was used. [Result] The concentration curve was linear within the range of 0-80.0μg/L of As and 0-8.0 μg/L of Hg, and the detection limits of As and Hg was 0.036 μg/L and 0.015 μg/L, respectively. The precision for elevenfold determination of As at 40.0 ug/L level and Hg at 4.0μg/L level were 1.1% and 2.2%(RSD), respectively. Recoveries of 103.0%-106.6% for As and 90.0%-95.0% for Hg were obtained for there soil samples. [Conclusion] The proposed method has the advantages of simple operation, high sensitivity, and high efficiency; it was successfully used for determination of As and Hg in soil samples.
基金Projects(41201493,31300815)supported by the National Natural Science Foundation of China
文摘The effects of different arsenic (As) treatments on spatial pattern of radial oxygen loss (ROL), iron (Fe) plaque formation and As accumulation in rice were investigated using three rice genotypes, planted under greenhouse conditions. Arsenic was applied to soil at 50 and 100 mg/kg, with untreated soil used as a control having an average As concentration of 8.5 mg/kg. It was demonstrated that the ratio of ROL in root tips to that at the root base slightly decreased with increasing As concentration, suggesting that the spatial ROL patterns in these groups may be shifted from the “tight” barrier towards the “partial” barrier form. Furthermore, increasing As concentration led to a increase in Fe plaque formation on root surfaces. In addition, root As concentrations of genotypes in 50 and 100 mg/kg As treatments were significantly higher than that of control treatment (P〈0.05). Grain As concentration of genotype Nanyangzhan (with lower ROL) was significantly higher (P〈0.05) than that of genotype CNT87059-3 with higher ROL.
基金funded by National Science Foundation of China (No. 40606028)National Basic Research Programs of China (No. 2006CB400601and 2001CB409703)
文摘The distributions and seasonal variations of total dissolved inorganic arsenic (TDIAs, [TDIAs] = [As^5+]+[As^3+]) and arsenite (As3.) in the Yellow Sea and East China Sea are presented hero based on the observations of 9 cruises carried out in 2000 - 2003. The study area covers a broad range of hydrographic and chemical properties. The emphasis is put on a southeast transect from Changjiang Estuary to the Ryukyu Islands (i.e. PN section) in the East China Sea to discuss the impact of terrestdal input on the marginal seas of China. Arsenic species (TDlAs and arsenite) are determined by selective hydride generation - atomic fluorescence spectrometry (HG-AFS). TDIAs concentrations were high in the coastal area of Changjiang Estuary and decreased slightly towards the shelf region. High concentratiOns of TDIAs were also existed in the near bottom layer of shelf edge of the East China Sea which indicated another source of arsenic from the incursion of Kuroshio Waters. The seasonal variations of TDIAs in the study area depend on the hydrographic stages of Changjiang and the incursion intensity of Kuroshio Waters. Arsenite showed opposite distributions with TDIAs, with higher concentrations appeared at the surface layer of shelf region, which was positive correlated with the chlorophyll a. Biological conversion of arsenate into arsenite was hypothesized for the observed distribution pattern and its seasonal variations. The stoichoimetric ratios of As to P were estimated to be about 2×10^3 at PN Section in summer. The concentrations of dissolved arsenic in the Yellow Sea and East China Sea were comparable with other areas in the world.
基金National Natural Science Foundation of China(No.30170368)
文摘Aim This study was to evaluate the effect of arsenic trioxide (As2O3) on the transgenic TNF-α promoter activity in cultured vascular smooth muscle cells (VSMCs) and THP-1 monocytes. Methods Human TNF-α promoter was constructed by reporter gene system and was transiently transfected into VSMCs and THP-1 in vitro. The promoter activity was tested by luciferase activity with or without LPS and Ang Ⅱ stimulation, before and after different dosage of As2O3 treatment. Results 1. TNF-α promoter effectively expressed in VSMCs and THP-1 compared with CMV promoter (58.3% and 80.9%, respectively). Both LPS and Ang Ⅱ significantly up-regulated TNF-α promoter activity (P〈0.05). 2. As2O3 significantly inhibited, both intact and LPS/Ang Ⅱ stimulated promoter activity, in a dose dependent manner (P〈0.05), and in both cell type. Conclusion These results manifested that, the inhibition effect of As2O3 on the activity of human TNF-α promoter indicated its potential inhibition on pro-inflammatory cytokine genes expression at transcriptional level and its potential anti-inflammatory property in the cardiovascular system.
文摘Objective: To study synergistic effect with Ascorbic acid(AA) on arsenic trioxide inducing human Hepatocarcinoma cell apoptosis, and provide theoretical basis for promoting human Hepatocarcinoma cell apoptosis induced by arsenic trioxide(AT). Methods: Human Hepatocarcinoma cell line BEL-7402 being cultured in vitro, the effect of AT and (or) AA on its growth inhibition and its two intracellular signal molecules was evaluated separately using MTT and Western blot. Results: AT at a few μmol/L concentration could suppress abnormal proliferation of human hepatocarcinoma cells, and initiate their apoptosis by activation of caspase-3, and activate extracellular-signal regulated kinases (ERKs), which were dependent on the dosage of AT conspicuously. The effect of AA on BEL-7402 was not significant; However, AA could effectively enhance AT-induced hepatocarcinoma cell apoptosis and lesion severity through activation of caspase-3 but not ERKs. Conclusion: Caspase-3 and ERKs proteins could involve in arsenic-induced hepatocarcinoma cell apoptosis and differentiation respectively as intracellular signaling molecules; The effect between AT and AA on hepatocarcinoma is synergistic, which further inhibits cell growth and induces apoptosis in human hepatocarcinoma cells through activation of caspase-3 but not ERKs.
基金supported by a grant from theNational Natural Science Foundation of China(No.30572114).
文摘OBJECTIVE To study the anti-tumor effect of arsenic trioxide on the HepG2 human hepatocellular carcinoma cell line, and to explore its mechanism of action. METHODS The MTT assay was used to determine the inhibitory effect of As2O3 on HepG2 cells at various As2O3 concentrations. The expression of p-JNK, caspase-3 and PARP was detected by Western blots. RESULTS As2O3 markedly inhibited the growth of the HepG2 cells and induced apoptosis. The results of Western blot analysis showed that the As2O3-induced apoptosis was accompanied by caspase-3 and PARP activation. p-JNK was detected at 10 min following As2O3 treatment, and preceded to peak at 20 min, and decreased by 30 min. The total protein content did not obviously change. The activation of JNK occurred prior to cell apoptosis. SP600125, a JNK inhibitor, suppressed the As2O3-induced activation of caspase-3 and PARP cleavage. CONCLUSION As2O3 inhibits the proliferation of human HepG2 hepatocellular carcinoma cells by inducing apoptosis in vitro. As2O3-induced apoptosis is accessed through the caspase-3 pathway. The JNK signal-transduction pathway and caspase-3 are involved upstream in the As2O3 induced HepG2 apoptotic response.
基金supported by the National Natural Sci-ence Foundation of China (No. 40671102, 20777083)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. RCEES-QN-200702)the Special Funds for Young Scholars of RCEES, CAS
文摘Phosphorus (P) deficiency is thought to exacerbate the arsenic (As) phytotoxicity in paddy rice. The experiments were conducted to investigate the effects of external phosphate supply on As accumulation in rice and its toxicity under phosphate deficiency conditions. Rice seedlings pretreated with a phosphorus deficient nutrient solution (-P) for 14 d accumulated more As than those pretreated with a normal phosphorus supply nutrient solution (+P). Rice protreated with -P showed As toxicity symptoms after being exposed to 50 μmol/L arsenate for 4 h, while +P rice did not show any toxicity symptoms. Arsenic toxicity symptoms can be alleviated by increasing external P concentrations. The arsenate uptake rate and accumulation corresponded with the As toxicity in rice plants. Arsenic concentrations in rice roots decreased with increasing external phosphate concentrations. The lowest As accumulation and the highest P accumulation were found when the external P concentration reached 100μmol/L. In short, P deficiency increased the sensitivity of rice to arsenate and increasing of external phosphate supply could alleviate As toxicity.
基金the Natural Science Foundation of Committee of Science and Technology of Shanghai Municipality(№964119035)
文摘AIM To study the effects of arsenic trioxide andHCPT on different degrees of differentiated gastriccancer cells(SGC-7901,MKN-45,MKN-28)withrespect to both cytotoxicity and induction ofapoptosis in vitro.METHODS The cytotoxicity of As<sub>2</sub>O<sub>3</sub> and HCPTon gastric cancer cells was determined by MTTassay.Morphologic changes of apoptosis ofgastric cancer cells were observed by lightmicroscopy and transmission electron microscopy.Apoptosis and cell cycle changes of gastric cancercells induced by HCPT and As<sub>2</sub>O<sub>3</sub> were investigatedby TUNEL method and flow cytometry.RESULTS As<sub>2</sub>O<sub>3</sub> and HCPT had remarkablecytotoxic effects on different degrees ofdifferentiated gastric cancer cells.The IC<sub>50</sub>ofAs<sub>2</sub>O<sub>3</sub> on well differentiated gastric cancer cellMKN-28,moderately differentiated gastric cancercell SGC-7901,and poorly differentiated gastriccancer cell MKN-28 were 8.91 μmol/L,10.57μmol/L,and 11.65 μmol/L,respectively.The IC<sub>50</sub>of HCPT on MKN-28,SGC-7901,and MKN-45 were9.35 mg/L,10.21 mg/L,and 12.63 mg/Lrespectively after 48 h treatment.After 12 h ofexposure to both drugs,gastric cancer cellsexhibited morphologic features of apoptosis,including cell shrinkage,nuclear condensation, and formation of apoptotic bodies.A typicalsubdiploid peak before G<sub>0</sub>/G<sub>1</sub> phase was observedby flow cytometry.The apoptotic rates of SGC-7901,MKN-45,and MKN-28 were 13.84%,22.52%,and 9.68%,respectively after 48 hexposure to 10 μmol/L As<sub>2</sub>O<sub>3</sub>.The apoptotic ratesof SGC-7901,MKN-45,and MKN-28 were 21.88%,12.35%,and 30.26%,respectively after 48 hexposure to 10 mg/L HCPT.The apoptotic indicewere 7%-15% as assessed by TUNEL method.The effect of As<sub>2</sub>O<sub>3</sub> on SGC-7901 showedremarkable cell cycle specificity,which inducedcell death in G<sub>1</sub> phase,and blocked G<sub>2</sub>/M phase.HCPT also showed a remarkable cell cyclespecificity,by inducing cell death and apoptosis inG<sub>1</sub> phase and arrest of proliferation at S phase.CONCLUSION As<sub>2</sub>O<sub>3</sub> and HCPT exhibitsignificant cytotoxicity on gastric cancer cells byinduction of apoptosis.As<sub>2</sub>O<sub>3</sub> and HCPT mighthave a promising prospect in the treatment ofgastric cancer,which needs to be further studied.