This work proposes an unsupervised topological features based entity disambiguation solution. Most existing studies leverage semantic information to resolve ambiguous references. However, the semantic information is n...This work proposes an unsupervised topological features based entity disambiguation solution. Most existing studies leverage semantic information to resolve ambiguous references. However, the semantic information is not always accessible because of privacy or is too expensive to access. We consider the problem in a setting that only relationships between references are available. A structure similarity algorithm via random walk with restarts is proposed to measure the similarity of references. The disambiguation is regarded as a clustering problem and a family of graph walk based clustering algorithms are brought to group ambiguous references. We evaluate our solution extensively on two real datasets and show its advantage over two state-of-the-art approaches in accuracy.展开更多
Entity recognition and disambiguation (ERD) is a crucial technique for knowledge base population and information extraction. In recent years, numerous papers have been published on this subject, and various ERD syst...Entity recognition and disambiguation (ERD) is a crucial technique for knowledge base population and information extraction. In recent years, numerous papers have been published on this subject, and various ERD systems have been developed. However, there are still some confusions over the ERD field for a fair and complete comparison of these systems. Therefore, it is of emerging interest to develop a unified evaluation framework. In this paper, we present an easy-to-use evaluation framework (EUEF), which aims at facilitating the evaluation process and giving a fair comparison of ERD systems. EUEF is well designed and released to the public as an open source, and thus could be easily extended with novel ERD systems, datasets, and evaluation metrics. It is easy to discover the advantages and disadvantages of a specific ERD system and its components based on EUEF. We perform a comparison of several popular and publicly available ERD systems by using EUEF, and draw some interesting conclusions after a detailed analysis.展开更多
Entity Linking(EL)aims to automatically link the mentions in unstructured documents to corresponding entities in a knowledge base(KB),which has recently been dominated by global models.Although many global EL methods ...Entity Linking(EL)aims to automatically link the mentions in unstructured documents to corresponding entities in a knowledge base(KB),which has recently been dominated by global models.Although many global EL methods attempt to model the topical coherence among all linked entities,most of them failed in exploiting the correlations among manifold knowledge helpful for linking,such as the semantics of mentions and their candidates,the neighborhood information of candidate entities in KB and the fine-grained type information of entities.As we will show in the paper,interactions among these types of information are very useful for better characterizing the topic features of entities and more accurately estimating the topical coherence among all the referred entities within the same document.In this paper,we present a novel HEterogeneous Graph-based Entity Linker(HEGEL)for global entity linking,which builds an informative heterogeneous graph for every document to collect various linking clues.Then HEGEL utilizes a novel heterogeneous graph neural network(HGNN)to integrate the different types of manifold information and model the interactions among them.Experiments on the standard benchmark datasets demonstrate that HEGEL can well capture the global coherence and outperforms the prior state-of-the-art EL methods.展开更多
Named entity disambiguation (NED) is the task of linking mentions of ambiguous entities to their referenced entities in a knowledge base such as Wikipedia. We propose an approach to effectively disentangle the discr...Named entity disambiguation (NED) is the task of linking mentions of ambiguous entities to their referenced entities in a knowledge base such as Wikipedia. We propose an approach to effectively disentangle the discriminative features in the manner of collaborative utilization of collective wisdom (via human-labeled crowd labels) and deep learning (via human-generated data) for the NED task. In particular, we devise a crowd model to elicit the underlying features (crowd features) from crowd labels that indicate a matching candidate for each mention, and then use the crowd features to fine-tune a dynamic convolutional neural network (DCNN). The learned DCNN is employed to obtain deep crowd features to enhance traditional hand-crafted features for the NED task. The proposed method substantially benefits from the utilization of crowd knowledge (via crowd labels) into a generic deep learning for the NED task. Experimental analysis demonstrates that the proposed approach is superior to the traditional hand-crafted features when enough crowd labels are gathered.展开更多
基金This work is supported by the National Basic Research 973 Program of China under Grant No. 2012CB316201, the Fundamental Research Funds for the Central Universities of China under Grant No. N120816001, and the National Natural Science Foundation of China under Grant Nos. 61472070 and 61402213.
文摘This work proposes an unsupervised topological features based entity disambiguation solution. Most existing studies leverage semantic information to resolve ambiguous references. However, the semantic information is not always accessible because of privacy or is too expensive to access. We consider the problem in a setting that only relationships between references are available. A structure similarity algorithm via random walk with restarts is proposed to measure the similarity of references. The disambiguation is regarded as a clustering problem and a family of graph walk based clustering algorithms are brought to group ambiguous references. We evaluate our solution extensively on two real datasets and show its advantage over two state-of-the-art approaches in accuracy.
基金Project supported by the National Natural Science Foundation of China (No. 61572434), the China Knowledge Centre for Engineering Sciences and Technology (No. CKC-EST-2015-2-5), and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP), China (No. 20130101110-136)
文摘Entity recognition and disambiguation (ERD) is a crucial technique for knowledge base population and information extraction. In recent years, numerous papers have been published on this subject, and various ERD systems have been developed. However, there are still some confusions over the ERD field for a fair and complete comparison of these systems. Therefore, it is of emerging interest to develop a unified evaluation framework. In this paper, we present an easy-to-use evaluation framework (EUEF), which aims at facilitating the evaluation process and giving a fair comparison of ERD systems. EUEF is well designed and released to the public as an open source, and thus could be easily extended with novel ERD systems, datasets, and evaluation metrics. It is easy to discover the advantages and disadvantages of a specific ERD system and its components based on EUEF. We perform a comparison of several popular and publicly available ERD systems by using EUEF, and draw some interesting conclusions after a detailed analysis.
基金supported in part by the National Key R&D Program of China(No.2020AAA0106600)the Key Laboratory of Science,Technology and Standard in Press Industry(Key Laboratory of Intelligent Press Media Technology)
文摘Entity Linking(EL)aims to automatically link the mentions in unstructured documents to corresponding entities in a knowledge base(KB),which has recently been dominated by global models.Although many global EL methods attempt to model the topical coherence among all linked entities,most of them failed in exploiting the correlations among manifold knowledge helpful for linking,such as the semantics of mentions and their candidates,the neighborhood information of candidate entities in KB and the fine-grained type information of entities.As we will show in the paper,interactions among these types of information are very useful for better characterizing the topic features of entities and more accurately estimating the topical coherence among all the referred entities within the same document.In this paper,we present a novel HEterogeneous Graph-based Entity Linker(HEGEL)for global entity linking,which builds an informative heterogeneous graph for every document to collect various linking clues.Then HEGEL utilizes a novel heterogeneous graph neural network(HGNN)to integrate the different types of manifold information and model the interactions among them.Experiments on the standard benchmark datasets demonstrate that HEGEL can well capture the global coherence and outperforms the prior state-of-the-art EL methods.
基金supported by the National Basic Research Program of China(No.2015CB352300)the National Natural Science Foundation of China(Nos.61402401 and U1509206)+3 种基金the Zhejiang Provincial Natural Science Foundation of China(No.LQ14F010004)the China Knowledge Centre for Engineering Sciences and Technologythe Fundamental Research Funds for the Central Universitiesthe Qianjiang Talents Program of Zhejiang Province,China
文摘Named entity disambiguation (NED) is the task of linking mentions of ambiguous entities to their referenced entities in a knowledge base such as Wikipedia. We propose an approach to effectively disentangle the discriminative features in the manner of collaborative utilization of collective wisdom (via human-labeled crowd labels) and deep learning (via human-generated data) for the NED task. In particular, we devise a crowd model to elicit the underlying features (crowd features) from crowd labels that indicate a matching candidate for each mention, and then use the crowd features to fine-tune a dynamic convolutional neural network (DCNN). The learned DCNN is employed to obtain deep crowd features to enhance traditional hand-crafted features for the NED task. The proposed method substantially benefits from the utilization of crowd knowledge (via crowd labels) into a generic deep learning for the NED task. Experimental analysis demonstrates that the proposed approach is superior to the traditional hand-crafted features when enough crowd labels are gathered.