期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A stall diagnosis method based on entropy feature identification in axial compressors
1
作者 Yang Liu Juan Du +3 位作者 Jichao Li Yang Xu Junqiang Zhu Chaoqun Nie 《International Journal of Mechanical System Dynamics》 2023年第1期73-84,共12页
A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally... A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally conducted for two different types of compressor stall diagnoses.A collection of time‐resolved pressure sensors is mounted circumferentially and along the chord direction to measure the dynamic pressure on the casing.Results show that the stall and prestall precursor embedded in the dynamic pressures are identified through nonlinear feature perturbation extraction using the entropy feature extraction algorithm.Further analysis demonstrates that the prestall precursor with the peak entropy value is related to the unsteady tip leakage flow for the spike‐type stall diagnosis.The modal wave inception with increasing amplitude is identified by the considerable increase of the entropy value.The flow field in the tip region indicates that the modal wave corresponds to the flow separation in the suction side of the rotor blade.The warning time is 100–300 rotor revolutions for both types of stall diagnoses,which is beneficial for stall control in different axial compressors.Moreover,a parametric study of the embedding dimension m,similar tolerance n,similar radius r,and data length N in the fuzzy entropy method is conducted to determine the optimal parameter setting for stall diagnosis.The stall warning based on the entropy feature extraction algorithm provides a new stall diagnosis approach in the axial compressor with different stall types.This stall warning can also be adopted as an online stability monitoring index when using the concept of active stall control. 展开更多
关键词 stall diagnosis entropy feature extraction algorithm fuzzy approximate entropy axial compressor
原文传递
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
2
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
下载PDF
A new parallel algorithm for image matching based on entropy
3
作者 董开坤 胡铭曾 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2001年第4期399-402,共4页
Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial in... Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial information of an image is appropriately introduced into the definition of image entropy. (2) A large number of multiplication operations are eliminated, thus the algorithm is sped up. (3) The shortcoming of having to do global calculation in the first instance is overcome, and concludes the algorithm has very good locality and is suitable for parallel processing. 展开更多
关键词 image matching entropy feature vector parallel algorithm SIMD
下载PDF
Features of temperature changes at Barrow of Arctic in the last 400 a
4
作者 王国 张青松 《Chinese Journal of Polar Science》 1998年第1期35-40,共6页
A temperature record from a lake core reveals that it becomes warming at average rate of 0 4 ℃ per century in the past 400 a at Barrow, but it turns cold in the past 200 a. Maximum entropy spectra analysis shows tha... A temperature record from a lake core reveals that it becomes warming at average rate of 0 4 ℃ per century in the past 400 a at Barrow, but it turns cold in the past 200 a. Maximum entropy spectra analysis shows that in the temperature fluctuations there are cycles of 33, 40, 29 a and about 90 a at Barrow. According to statistics and entropy analysis of monthly mean temperature from Barrow Meteorological Observatory in 1921 1994, there are cycles of 4, 6, 14, 16 months and 3, 4, 7, 10 a in the recent temperature change. 展开更多
关键词 ARCTIC BARROW temperature change entropy spectra feature.
下载PDF
A Novel MDFA-MKECA Method With Application to Industrial Batch Process Monitoring 被引量:4
5
作者 Yinghua Yang Xiang Shi +1 位作者 Xiaozhi Liu Hongru Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第5期1446-1454,共9页
For the complex batch process with characteristics of unequal batch data length,a novel data-driven batch process monitoring method is proposed based on mixed data features analysis and multi-way kernel entropy compon... For the complex batch process with characteristics of unequal batch data length,a novel data-driven batch process monitoring method is proposed based on mixed data features analysis and multi-way kernel entropy component analysis(MDFA-MKECA)in this paper.Combining the mechanistic knowledge,different mixed data features of each batch including statistical and thermodynamics entropy features,are extracted to finish data pre-processing.After that,MKECA is applied to reduce data dimensionality and finally establish a monitoring model.The proposed method is applied to a reheating furnace industry process,and the experimental results demonstrate that the MDFA-MKECA method can reduce the calculated amount and effectively provide on-line monitoring of the batch process. 展开更多
关键词 MDFA MKECA process monitoring reheating furnace statistical features thermodynamics entropy feature
下载PDF
Multi-dimensional and Multi-threshold Airframe Damage Region Division Method Based on Correlation Optimization
6
作者 CAI Shuyu SHI Tao SHI Lizhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期788-799,共12页
In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlatio... In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance. 展开更多
关键词 airframe damage region division multi-dimensional feature entropy MULTI-THRESHOLD correlation optimization aircraft intelligent maintenance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部