A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally...A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally conducted for two different types of compressor stall diagnoses.A collection of time‐resolved pressure sensors is mounted circumferentially and along the chord direction to measure the dynamic pressure on the casing.Results show that the stall and prestall precursor embedded in the dynamic pressures are identified through nonlinear feature perturbation extraction using the entropy feature extraction algorithm.Further analysis demonstrates that the prestall precursor with the peak entropy value is related to the unsteady tip leakage flow for the spike‐type stall diagnosis.The modal wave inception with increasing amplitude is identified by the considerable increase of the entropy value.The flow field in the tip region indicates that the modal wave corresponds to the flow separation in the suction side of the rotor blade.The warning time is 100–300 rotor revolutions for both types of stall diagnoses,which is beneficial for stall control in different axial compressors.Moreover,a parametric study of the embedding dimension m,similar tolerance n,similar radius r,and data length N in the fuzzy entropy method is conducted to determine the optimal parameter setting for stall diagnosis.The stall warning based on the entropy feature extraction algorithm provides a new stall diagnosis approach in the axial compressor with different stall types.This stall warning can also be adopted as an online stability monitoring index when using the concept of active stall control.展开更多
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m...In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.展开更多
Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial in...Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial information of an image is appropriately introduced into the definition of image entropy. (2) A large number of multiplication operations are eliminated, thus the algorithm is sped up. (3) The shortcoming of having to do global calculation in the first instance is overcome, and concludes the algorithm has very good locality and is suitable for parallel processing.展开更多
A temperature record from a lake core reveals that it becomes warming at average rate of 0 4 ℃ per century in the past 400 a at Barrow, but it turns cold in the past 200 a. Maximum entropy spectra analysis shows tha...A temperature record from a lake core reveals that it becomes warming at average rate of 0 4 ℃ per century in the past 400 a at Barrow, but it turns cold in the past 200 a. Maximum entropy spectra analysis shows that in the temperature fluctuations there are cycles of 33, 40, 29 a and about 90 a at Barrow. According to statistics and entropy analysis of monthly mean temperature from Barrow Meteorological Observatory in 1921 1994, there are cycles of 4, 6, 14, 16 months and 3, 4, 7, 10 a in the recent temperature change.展开更多
For the complex batch process with characteristics of unequal batch data length,a novel data-driven batch process monitoring method is proposed based on mixed data features analysis and multi-way kernel entropy compon...For the complex batch process with characteristics of unequal batch data length,a novel data-driven batch process monitoring method is proposed based on mixed data features analysis and multi-way kernel entropy component analysis(MDFA-MKECA)in this paper.Combining the mechanistic knowledge,different mixed data features of each batch including statistical and thermodynamics entropy features,are extracted to finish data pre-processing.After that,MKECA is applied to reduce data dimensionality and finally establish a monitoring model.The proposed method is applied to a reheating furnace industry process,and the experimental results demonstrate that the MDFA-MKECA method can reduce the calculated amount and effectively provide on-line monitoring of the batch process.展开更多
In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlatio...In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:51922098,51727810National Science and TechnologyMajor Project of China,Grant/Award Number:J2019‐II‐0020‐0041Special Fund for the Member of Youth Innovation Promotion Association of Chinese Academy of Sciences,Grant/Award Number:2018173。
文摘A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally conducted for two different types of compressor stall diagnoses.A collection of time‐resolved pressure sensors is mounted circumferentially and along the chord direction to measure the dynamic pressure on the casing.Results show that the stall and prestall precursor embedded in the dynamic pressures are identified through nonlinear feature perturbation extraction using the entropy feature extraction algorithm.Further analysis demonstrates that the prestall precursor with the peak entropy value is related to the unsteady tip leakage flow for the spike‐type stall diagnosis.The modal wave inception with increasing amplitude is identified by the considerable increase of the entropy value.The flow field in the tip region indicates that the modal wave corresponds to the flow separation in the suction side of the rotor blade.The warning time is 100–300 rotor revolutions for both types of stall diagnoses,which is beneficial for stall control in different axial compressors.Moreover,a parametric study of the embedding dimension m,similar tolerance n,similar radius r,and data length N in the fuzzy entropy method is conducted to determine the optimal parameter setting for stall diagnosis.The stall warning based on the entropy feature extraction algorithm provides a new stall diagnosis approach in the axial compressor with different stall types.This stall warning can also be adopted as an online stability monitoring index when using the concept of active stall control.
基金Project(61301095)supported by the National Natural Science Foundation of ChinaProject(QC2012C070)supported by Heilongjiang Provincial Natural Science Foundation for the Youth,ChinaProjects(HEUCF130807,HEUCFZ1129)supported by the Fundamental Research Funds for the Central Universities of China
文摘In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.
文摘Presents a new parallel image matching algorithm based on the concept of entropy feature vector and suitable to SIMD computer, which, in comparison with other algorithms, has the following advantages:(1)The spatial information of an image is appropriately introduced into the definition of image entropy. (2) A large number of multiplication operations are eliminated, thus the algorithm is sped up. (3) The shortcoming of having to do global calculation in the first instance is overcome, and concludes the algorithm has very good locality and is suitable for parallel processing.
文摘A temperature record from a lake core reveals that it becomes warming at average rate of 0 4 ℃ per century in the past 400 a at Barrow, but it turns cold in the past 200 a. Maximum entropy spectra analysis shows that in the temperature fluctuations there are cycles of 33, 40, 29 a and about 90 a at Barrow. According to statistics and entropy analysis of monthly mean temperature from Barrow Meteorological Observatory in 1921 1994, there are cycles of 4, 6, 14, 16 months and 3, 4, 7, 10 a in the recent temperature change.
基金supported by National Key R&D Program of China(Smart process control technology for aluminum&copper strip based on industrial big data)(2017YFB0306405)。
文摘For the complex batch process with characteristics of unequal batch data length,a novel data-driven batch process monitoring method is proposed based on mixed data features analysis and multi-way kernel entropy component analysis(MDFA-MKECA)in this paper.Combining the mechanistic knowledge,different mixed data features of each batch including statistical and thermodynamics entropy features,are extracted to finish data pre-processing.After that,MKECA is applied to reduce data dimensionality and finally establish a monitoring model.The proposed method is applied to a reheating furnace industry process,and the experimental results demonstrate that the MDFA-MKECA method can reduce the calculated amount and effectively provide on-line monitoring of the batch process.
基金supported by the Aeronautical Science Foundation of China(No.20151067003)。
文摘In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance.