期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Optimization of cold-end system of thermal power plants based on entropy generation minimization 被引量:1
1
作者 Yue FU Yongliang ZHAO +2 位作者 Ming LIU Jinshi WANG Junjie YAN 《Frontiers in Energy》 SCIE CSCD 2022年第6期956-972,共17页
Cold-end systems are heat sinks of thermal power cycles,which have an essential effect on the overall performance of thermal power plants.To enhance the efficiency of thermal power plants,multi-pressure condensers hav... Cold-end systems are heat sinks of thermal power cycles,which have an essential effect on the overall performance of thermal power plants.To enhance the efficiency of thermal power plants,multi-pressure condensers have been applied in some large-capacity thermal power plants.However,little attention has been paid to the optimization of the cold-end system with multi-pressure condensers which have multiple parameters to be identified.Therefore,the design optimization methods of coldend systems with single-and multi-pressure condensers are developed based on the entropy generation rate,and the genetic algorithm(GA)is used to optimize multiple parameters.Multiple parameters,including heat transfer area of multi-pressure condensers,steam distribution in condensers,and cooling water mass flow rate,are optimized while considering detailed entropy generation rate of the cold-end systems.The results show that the entropy generation rate of the multi-pressure cold-end system is less than that of the single-pressure cold-end system when the total condenser area is constant.Moreover,the economic performance can be improved with the adoption of the multi-pressure cold-end system.When compared with the single-pressure cold-end system,the excess revenues gained by using dual-and quadruplepressure cold-end systems are 575 and 580 k$/a,respectively. 展开更多
关键词 cold-end system entropy generation minimization OPTIMIZATION economic analysis genetic algorithm(GA)
原文传递
Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating 被引量:3
2
作者 程雪涛 梁新刚 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期361-364,共4页
Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy g... Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. 展开更多
关键词 entropy generation minimization heat exchanger entropy resistance ANALYSES
下载PDF
Total entropy generation rate minimization configuration of a membrane reactor of methanol synthesis via carbon dioxide hydrogenation 被引量:4
3
作者 LI PengLei CHEN LinGen +2 位作者 XIA ShaoJun KONG Rui GE YanLin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第3期657-678,共22页
The total entropy generation rate,internal exergy loss and exergy efficiency of the membrane reactor of methanol synthesis via carbon dioxide hydrogenation are compared,and the results show that the total entropy gene... The total entropy generation rate,internal exergy loss and exergy efficiency of the membrane reactor of methanol synthesis via carbon dioxide hydrogenation are compared,and the results show that the total entropy generation rate minimization is equivalent to the internal exergy loss minimization and the exergy efficiency maximization under the fixed inlet exergy.Therefore,this paper optimizes the membrane reactor with total entropy generation rate minimization as an optimization objective under a fixed methanol production rate.The optimal temperatures curves of exterior walls for three optimal membrane reactors with different boundary conditions are obtained by using optimal control theory and nonlinear programming.The influences of other geometric and operating parameters on optimization results of optimal membrane reactors are analyzed.The results indicate that when inlet temperatures of the reaction mixture and mixture in the permeable tube are unfixed,the optimizing curve of exterior wall temperature makes the total entropy generation rate of membrane reactor reduce by 12.39%compared with the total entropy generation rate of a reference membrane reactor with a linear exterior wall temperature.Decreasing the inlet molar flow rate of sweep gas and gas hourly space velocity and increasing inlet pressure of reaction mixture,the inlet pressure of mixture in the permeable tube and heat transfer coefficients are favorable for decreasing the total entropy generation rate in the membrane reactor.As the porosity of catalyst bed and reactor length increases,the minimum total entropy generation rate decreases first and then increases.From the perspective of engineering application,this paper establishes two membrane reactors(membrane reactor heated by three-stage furnaces of the same length and membrane reactor heated by threestage furnaces of different lengths),respectively.The minimum total entropy generation rates of the two reactors are reduced by11.67%and 11.79%compared with the total entropy generation rate in the reference membrane reactor,respectively.The obtained results are beneficial to the optimal design of energy-efficient membrane reactors. 展开更多
关键词 membrane reactor methanol synthesis via carbon dioxide hydrogenation multi-stage furnaces finite-time thermo-dynamics entropy generation rate minimization optimal configuration
原文传递
Optimization of combined endoreversible Carnot heat engines with different objectives 被引量:4
4
作者 程雪涛 梁新刚 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第6期239-244,共6页
Taking the output power, thermal efficiency, and thermo-economic performance as the optimization objectives, we optimize the operation parameters of a thermodynamic system with combined endoreversible Carnot heat engi... Taking the output power, thermal efficiency, and thermo-economic performance as the optimization objectives, we optimize the operation parameters of a thermodynamic system with combined endoreversible Carnot heat engines in this paper. The applicabilities of the entropy generation minimization and entransy theory to the optimizations are discussed. For the discussed cases, only the entransy loss coefficient is always agreeable to the optimization of thermal efficiency. The applicabilities of the other discussed concepts to the optimizations are conditional. Different concepts and principles are needed for different optimization objectives, and the optimization principles have their application preconditions. When the preconditions are not satisfied, the principles may be not applicable. 展开更多
关键词 combined endoreversible Carnot heat engines entransy theory entropy generation minimization finite time thermodynamics
下载PDF
Constructal design progress for eight types of heat sinks 被引量:28
5
作者 CHEN LinGen YANG AiBo +2 位作者 FENG HuiJun GE YanLin XIA ShaoJun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第6期879-911,共33页
This review paper summarizes constructal design progress performed by the authors for eight types of heat sinks with ten performance indexes being taken as the optimization objectives,respectively,by combining the met... This review paper summarizes constructal design progress performed by the authors for eight types of heat sinks with ten performance indexes being taken as the optimization objectives,respectively,by combining the methods of theoretical analysis and numerical calculation.The eight types of heat sinks are uniform height rectangular fin heat sink,non-uniform height rectangular fin heat sink,inline cylindrical pin-fin heat sink(ICPHS),plate single-row pin fin heat sink(PSRPHS),plate inline pin fin heat sink(PIPHS),plate staggered pin fin heat sink(PSPHS),single-layered microchannel heat sink(SLMCHS)with rectangular cross sections and double-layered microchannel heat sink(DLMCHS)with rectangular cross sections,respectively.And the ten performance indexes are heat transfer rate maximization,maximum thermal resistance minimization,minimization of equivalent thermal resistance which is defined based on the entransy dissipation rate(equivalent thermal resistance for short),field synergy number maximization,entropy generation rate minimization,operation cost minimization,thermo-economic function value minimization,pressure drop minimization,enhanced heat transfer factor maximization and efficiency evaluation criterion number maximization,respectively.The optimal constructs of the eight types of heat sinks with different constraints and based on the different optimization objectives are compared with each other.The results indicated that the optimal constructs mostly are different based on different optimization objectives under the same boundary condition.The optimization objective should be suitable chosen based on the focus when the constructal design for one heat sink is performed.The results obtained herein have some important theoretical significances and application values,and can provide scientific bases and theoretical guidelines for the thermal design of real heat sinks and their applications. 展开更多
关键词 constructal theory entropy generation minimization principle field synergy principle extremum principle of entransy dissipation generalized thermodynamic optimization multi-objective optimization of heat sinks
原文传递
Optimization Design of the Grate Cooler Based on the Power Flow Method and Genetic Algorithms 被引量:2
6
作者 MA Xiaoteng CAO Qun CUI Zheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第6期1617-1626,共10页
As an important process during the cement production,grate cooler plays significance roles on clinker cooling and waste heat recovery.In this paper,we measured experimentally the heat balance of the grate cooler,which... As an important process during the cement production,grate cooler plays significance roles on clinker cooling and waste heat recovery.In this paper,we measured experimentally the heat balance of the grate cooler,which provided initial operating parameters for optimization.Then,the grate cooler was simplified into a series-connected heat exchanger network by power flow method.Constructing the equivalent thermal resistance network provided the global constraints by Kirchhoff’s law.On this basis,with the objectives of the minimum entropy generation numbers caused by heat transfer and viscous dissipation,solving a multi-objective optimization model achieved the Pareto Front by genetic algorithm.Then selecting the scheme of the lowest fan power consumption obtained the optimal operating parameters of the grate cooler.The results showed that the total mass flow of the optimized scheme did not change significantly compared with the original scheme,but the fan power consumption was 25.44%lower,and the heat recovery efficiency was 88.43%,which was improved by 11.35%.Furthermore,the analysis showed that the optimal operating parameters were affected by the local heat load.After optimizing the diameter of clinker particles within the allowable industrial range,the clinker with particle diameter of 0.02 m had the optimal performance. 展开更多
关键词 power flow method genetic algorithm grate cooler entropy generation minimization multi-objective optimization
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部