In this paper,a definition of entropy for Z+k(k≥2)-actions due to Friedland is studied.Unlike the traditional definition,it may take a nonzero value for actions whose generators have finite(even zero) entropy as...In this paper,a definition of entropy for Z+k(k≥2)-actions due to Friedland is studied.Unlike the traditional definition,it may take a nonzero value for actions whose generators have finite(even zero) entropy as single transformations.Some basic properties are investigated and its value for the Z+k-actions on circles generated by expanding endomorphisms is given.Moreover,an upper bound of this entropy for the Z+k-actions on tori generated by expanding endomorphisms is obtained via the preimage entropies,which are entropy-like invariants depending on the "inverse orbits" structure of the system.展开更多
In this paper,forward expansiveness and entropies of"subsystems"2)of Z^(k)_(+)-actions are investigated.Letαbe a Z^(k)_(+)-action on a compact metric space.For each 1≤j≤k-1,denote G^(j)_(+)={V+:=V∩R^(k)_...In this paper,forward expansiveness and entropies of"subsystems"2)of Z^(k)_(+)-actions are investigated.Letαbe a Z^(k)_(+)-action on a compact metric space.For each 1≤j≤k-1,denote G^(j)_(+)={V+:=V∩R^(k)_(+):V is a j-dimensional subspace of R^(k)}.We consider the forward expansiveness and entropies forαalong V+∈G^(j)_(+).Adapting the technique of"coding",which was introduced by M.Boyle and D.Lind to investigate expansive subdynamics of Z^(k)-actions,to the Z^(k)_(+)cases,we show that the set E^(j)_(+)(α)of forward expansive j-dimensional V_(+)is open in G^(j)_(+).The topological entropy and measure-theoretic entropy of j-dimensional subsystems ofαare both continuous in E^(j)_(+)(α),and moreover,a variational principle relating them is obtained.For a 1-dimensional ray L∈G^(+)_(1),we relate the 1-dimensional subsystem ofαalong L to an i.i.d.random transformation.Applying the techniques of random dynamical systems we investigate the entropy theory of 1-dimensional subsystems.In particular,we propose the notion of preimage entropy(including topological and measure-theoretical versions)via the preimage structure ofαalong L.We show that the preimage entropy coincides with the classical entropy along any L∈E1+(α)for topological and measure-theoretical versions respectively.Meanwhile,a formula relating the measure-theoretical directional preimage entropy and the folding entropy of the generators is obtained.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11071054)the Key Project of Chinese Ministry of Education(Grant No.211020)+1 种基金the Program for New Century Excellent Talents in University(Grant No.11-0935)the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(Grant No.11126011)
文摘In this paper,a definition of entropy for Z+k(k≥2)-actions due to Friedland is studied.Unlike the traditional definition,it may take a nonzero value for actions whose generators have finite(even zero) entropy as single transformations.Some basic properties are investigated and its value for the Z+k-actions on circles generated by expanding endomorphisms is given.Moreover,an upper bound of this entropy for the Z+k-actions on tori generated by expanding endomorphisms is obtained via the preimage entropies,which are entropy-like invariants depending on the "inverse orbits" structure of the system.
基金Wang and Zhu are supported by NSFC (Grant Nos.11771118,11801336,12171400)Wang is also supported by China Postdoctoral Science Foundation (No.2021M691889)。
文摘In this paper,forward expansiveness and entropies of"subsystems"2)of Z^(k)_(+)-actions are investigated.Letαbe a Z^(k)_(+)-action on a compact metric space.For each 1≤j≤k-1,denote G^(j)_(+)={V+:=V∩R^(k)_(+):V is a j-dimensional subspace of R^(k)}.We consider the forward expansiveness and entropies forαalong V+∈G^(j)_(+).Adapting the technique of"coding",which was introduced by M.Boyle and D.Lind to investigate expansive subdynamics of Z^(k)-actions,to the Z^(k)_(+)cases,we show that the set E^(j)_(+)(α)of forward expansive j-dimensional V_(+)is open in G^(j)_(+).The topological entropy and measure-theoretic entropy of j-dimensional subsystems ofαare both continuous in E^(j)_(+)(α),and moreover,a variational principle relating them is obtained.For a 1-dimensional ray L∈G^(+)_(1),we relate the 1-dimensional subsystem ofαalong L to an i.i.d.random transformation.Applying the techniques of random dynamical systems we investigate the entropy theory of 1-dimensional subsystems.In particular,we propose the notion of preimage entropy(including topological and measure-theoretical versions)via the preimage structure ofαalong L.We show that the preimage entropy coincides with the classical entropy along any L∈E1+(α)for topological and measure-theoretical versions respectively.Meanwhile,a formula relating the measure-theoretical directional preimage entropy and the folding entropy of the generators is obtained.