期刊文献+
共找到408篇文章
< 1 2 21 >
每页显示 20 50 100
Knowledge Transfer Learning via Dual Density Sampling for Resource-Limited Domain Adaptation
1
作者 Zefeng Zheng Luyao Teng +2 位作者 Wei Zhang Naiqi Wu Shaohua Teng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第12期2269-2291,共23页
Most existing domain adaptation(DA) methods aim to explore favorable performance under complicated environments by sampling.However,there are three unsolved problems that limit their efficiencies:ⅰ) they adopt global... Most existing domain adaptation(DA) methods aim to explore favorable performance under complicated environments by sampling.However,there are three unsolved problems that limit their efficiencies:ⅰ) they adopt global sampling but neglect to exploit global and local sampling simultaneously;ⅱ)they either transfer knowledge from a global perspective or a local perspective,while overlooking transmission of confident knowledge from both perspectives;and ⅲ) they apply repeated sampling during iteration,which takes a lot of time.To address these problems,knowledge transfer learning via dual density sampling(KTL-DDS) is proposed in this study,which consists of three parts:ⅰ) Dual density sampling(DDS) that jointly leverages two sampling methods associated with different views,i.e.,global density sampling that extracts representative samples with the most common features and local density sampling that selects representative samples with critical boundary information;ⅱ)Consistent maximum mean discrepancy(CMMD) that reduces intra-and cross-domain risks and guarantees high consistency of knowledge by shortening the distances of every two subsets among the four subsets collected by DDS;and ⅲ) Knowledge dissemination(KD) that transmits confident and consistent knowledge from the representative target samples with global and local properties to the whole target domain by preserving the neighboring relationships of the target domain.Mathematical analyses show that DDS avoids repeated sampling during the iteration.With the above three actions,confident knowledge with both global and local properties is transferred,and the memory and running time are greatly reduced.In addition,a general framework named dual density sampling approximation(DDSA) is extended,which can be easily applied to other DA algorithms.Extensive experiments on five datasets in clean,label corruption(LC),feature missing(FM),and LC&FM environments demonstrate the encouraging performance of KTL-DDS. 展开更多
关键词 Cross-domain risk dual density sampling intra-domain risk maximum mean discrepancy knowledge transfer learning resource-limited domain adaptation
下载PDF
Frequency Domain Adaptive Learning Algorithm for Thoracic Electrical Bioimpedance Enhancement
2
作者 Md Zia Ur Rahman S.Rooban +2 位作者 P.Rohini M.V.S.Ramprasad Pradeep Vinaik Kodavanti 《Computers, Materials & Continua》 SCIE EI 2022年第9期5713-5726,共14页
The Thoracic Electrical Bioimpedance(TEB)helps to determine the stroke volume during cardiac arrest.While measuring cardiac signal it is contaminated with artifacts.The commonly encountered artifacts are Baseline wand... The Thoracic Electrical Bioimpedance(TEB)helps to determine the stroke volume during cardiac arrest.While measuring cardiac signal it is contaminated with artifacts.The commonly encountered artifacts are Baseline wander(BW)and Muscle artifact(MA),these are physiological and nonstationary.As the nature of these artifacts is random,adaptive filtering is needed than conventional fixed coefficient filtering techniques.To address this,a new block based adaptive learning scheme is proposed to remove artifacts from TEB signals in clinical scenario.The proposed block least mean square(BLMS)algorithm is mathematically normalized with reference to data and error.This normalization leads,block normalized LMS(BNLMS)and block error normalized LMS(BENLMS)algorithms.Various adaptive artifact cancellers are developed in both time and frequency domains and applied on real TEB quantities contaminated with physiological signals.The ability of these techniques is measured by calculating signal to noise ratio improvement(SNRI),Excess Mean Square Error(EMSE),and Misadjustment(Mad).Among the considered algorithms,the frequency domain version of BENLMS algorithm removes the physiological artifacts effectively then the other counter parts.Hence,this adaptive artifact canceller is suitable for real time applications like wearable,remove health care monitoring units. 展开更多
关键词 adaptive learning artifact canceller block processing frequency domain thoracic electrical bioimpedance
下载PDF
Bearing Fault Diagnosis Based on Deep Discriminative Adversarial Domain Adaptation Neural Networks
3
作者 Jinxi Guo Kai Chen +5 位作者 Jiehui Liu Yuhao Ma Jie Wu Yaochun Wu Xiaofeng Xue Jianshen Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2619-2640,共22页
Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received in... Intelligent diagnosis driven by big data for mechanical fault is an important means to ensure the safe operation ofequipment. In these methods, deep learning-based machinery fault diagnosis approaches have received increasingattention and achieved some results. It might lead to insufficient performance for using transfer learning alone andcause misclassification of target samples for domain bias when building deep models to learn domain-invariantfeatures. To address the above problems, a deep discriminative adversarial domain adaptation neural networkfor the bearing fault diagnosis model is proposed (DDADAN). In this method, the raw vibration data are firstlyconverted into frequency domain data by Fast Fourier Transform, and an improved deep convolutional neuralnetwork with wide first-layer kernels is used as a feature extractor to extract deep fault features. Then, domaininvariant features are learned from the fault data with correlation alignment-based domain adversarial training.Furthermore, to enhance the discriminative property of features, discriminative feature learning is embeddedinto this network to make the features compact, as well as separable between classes within the class. Finally, theperformance and anti-noise capability of the proposedmethod are evaluated using two sets of bearing fault datasets.The results demonstrate that the proposed method is capable of handling domain offset caused by differentworkingconditions and maintaining more than 97.53% accuracy on various transfer tasks. Furthermore, the proposedmethod can achieve high diagnostic accuracy under varying noise levels. 展开更多
关键词 Fault diagnosis transfer learning domain adaptation discriminative feature learning correlation alignment
下载PDF
Tool Wear State Recognition with Deep Transfer Learning Based on Spindle Vibration for Milling Process
4
作者 Qixin Lan Binqiang Chen +1 位作者 Bin Yao Wangpeng He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2825-2844,共20页
The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the s... The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains. 展开更多
关键词 Multi-working conditions tool wear state recognition unsupervised transfer learning domain adaptation maximum mean discrepancy(MMD)
下载PDF
Deep Domain-Adversarial Anomaly Detection With One-Class Transfer Learning 被引量:1
5
作者 Wentao Mao Gangsheng Wang +1 位作者 Linlin Kou Xihui Liang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期524-546,共23页
Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-c... Despite the big success of transfer learning techniques in anomaly detection,it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-class classification,especially for the data with a large distribution difference.To address this challenge,a novel deep one-class transfer learning algorithm with domain-adversarial training is proposed in this paper.First,by integrating a hypersphere adaptation constraint into domainadversarial neural network,a new hypersphere adversarial training mechanism is designed.Second,an alternative optimization method is derived to seek the optimal network parameters while pushing the hyperspheres built in the source domain and target domain to be as identical as possible.Through transferring oneclass detection rule in the adaptive extraction of domain-invariant feature representation,the end-to-end anomaly detection with one-class classification is then enhanced.Furthermore,a theoretical analysis about the model reliability,as well as the strategy of avoiding invalid and negative transfer,is provided.Experiments are conducted on two typical anomaly detection problems,i.e.,image recognition detection and online early fault detection of rolling bearings.The results demonstrate that the proposed algorithm outperforms the state-of-the-art methods in terms of detection accuracy and robustness. 展开更多
关键词 Anomaly detection domain adaptation domainadversarial training one-class classification transfer learning
下载PDF
Explainable, Domain-Adaptive, and Federated Artificial Intelligence in Medicine 被引量:1
6
作者 Ahmad Chaddad Qizong Lu +5 位作者 Jiali Li Yousef Katib Reem Kateb Camel Tanougast Ahmed Bouridane Ahmed Abdulkadir 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期859-876,共18页
Artificial intelligence(AI)continues to transform data analysis in many domains.Progress in each domain is driven by a growing body of annotated data,increased computational resources,and technological innovations.In ... Artificial intelligence(AI)continues to transform data analysis in many domains.Progress in each domain is driven by a growing body of annotated data,increased computational resources,and technological innovations.In medicine,the sensitivity of the data,the complexity of the tasks,the potentially high stakes,and a requirement of accountability give rise to a particular set of challenges.In this review,we focus on three key methodological approaches that address some of the particular challenges in AI-driven medical decision making.1)Explainable AI aims to produce a human-interpretable justification for each output.Such models increase confidence if the results appear plausible and match the clinicians expectations.However,the absence of a plausible explanation does not imply an inaccurate model.Especially in highly non-linear,complex models that are tuned to maximize accuracy,such interpretable representations only reflect a small portion of the justification.2)Domain adaptation and transfer learning enable AI models to be trained and applied across multiple domains.For example,a classification task based on images acquired on different acquisition hardware.3)Federated learning enables learning large-scale models without exposing sensitive personal health information.Unlike centralized AI learning,where the centralized learning machine has access to the entire training data,the federated learning process iteratively updates models across multiple sites by exchanging only parameter updates,not personal health data.This narrative review covers the basic concepts,highlights relevant corner-stone and stateof-the-art research in the field,and discusses perspectives. 展开更多
关键词 domain adaptation explainable artificial intelligence federated learning
下载PDF
Unsupervised Domain Adaptation Based on Discriminative Subspace Learning for Cross-Project Defect Prediction 被引量:1
7
作者 Ying Sun Yanfei Sun +4 位作者 Jin Qi Fei Wu Xiao-Yuan Jing Yu Xue Zixin Shen 《Computers, Materials & Continua》 SCIE EI 2021年第9期3373-3389,共17页
:Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project... :Cross-project defect prediction(CPDP)aims to predict the defects on target project by using a prediction model built on source projects.The main problem in CPDP is the huge distribution gap between the source project and the target project,which prevents the prediction model from performing well.Most existing methods overlook the class discrimination of the learned features.Seeking an effective transferable model from the source project to the target project for CPDP is challenging.In this paper,we propose an unsupervised domain adaptation based on the discriminative subspace learning(DSL)approach for CPDP.DSL treats the data from two projects as being from two domains and maps the data into a common feature space.It employs crossdomain alignment with discriminative information from different projects to reduce the distribution difference of the data between different projects and incorporates the class discriminative information.Specifically,DSL first utilizes subspace learning based domain adaptation to reduce the distribution gap of data between different projects.Then,it makes full use of the class label information of the source project and transfers the discrimination ability of the source project to the target project in the common space.Comprehensive experiments on five projects verify that DSL can build an effective prediction model and improve the performance over the related competing methods by at least 7.10%and 11.08%in terms of G-measure and AUC. 展开更多
关键词 Cross-project defect prediction discriminative subspace learning unsupervised domain adaptation
下载PDF
Unsupervised Domain Adaptation Learning Algorithm for RGB-D Stairway Recognition 被引量:1
8
作者 Jing WANG Kuangen ZHANGl 《Instrumentation》 2019年第2期21-29,共9页
Detection and recognition of a stairway as upstairs,downstairs and negative(e.g.,ladder,level ground)are the fundamentals of assisting the visually impaired to travel independently in unfamiliar environments.Previous ... Detection and recognition of a stairway as upstairs,downstairs and negative(e.g.,ladder,level ground)are the fundamentals of assisting the visually impaired to travel independently in unfamiliar environments.Previous studies have focused on using massive amounts of RGB-D scene data to train traditional machine learning(ML)-based models to detect and recognize stationary stairway and escalator stairway separately.Nevertheless,none of them consider jointly training these two similar but different datasets to achieve better performance.This paper applies an adversarial learning algorithm on the indicated unsupervised domain adaptation scenario to transfer knowledge learned from the labeled RGB-D escalator stairway dataset to the unlabeled RGB-D stationary dataset.By utilizing the developed method,a feedforward convolutional neural network(CNN)-based feature extractor with five convolution layers can achieve 100%classification accuracy on testing the labeled escalator stairway data distributions and 80.6%classification accuracy on testing the unlabeled stationary data distributions.The success of the developed approach is demonstrated for classifying stairway on these two domains with a limited amount of data.To further demonstrate the effectiveness of the proposed method,the same CNN model is evaluated without domain adaptation and the results are compared with those of the presented architecture. 展开更多
关键词 domain adaptATION convolutional Neural Network Deep learning RGB-D SCENE Data Stairway Classification Visually IMPAIRED
下载PDF
Balanced Discriminative Transfer Feature Learning for Visual Domain Adaptation
9
作者 SU Limin ZHANG Qiang +1 位作者 LI Shuang Chi Harold LIU 《ZTE Communications》 2020年第4期78-83,共6页
Transfer learning aims to transfer source models to a target domain.Leveraging the feature matching can alleviate the domain shift effectively,but this process ignores the relationship of the marginal distribution mat... Transfer learning aims to transfer source models to a target domain.Leveraging the feature matching can alleviate the domain shift effectively,but this process ignores the relationship of the marginal distribution matching and the conditional distribution matching.Simultaneously,the discriminative information of both domains is also neglected,which is important for improving the performance on the target domain.In this paper,we propose a novel method called Balanced Discriminative Transfer Feature Learning for Visual Domain Adaptation(BDTFL).The proposed method can adaptively balance the relationship of both distribution matchings and capture the category discriminative information of both domains.Therefore,balanced feature matching can achieve more accurate feature matching and adaptively adjust itself to different scenes.At the same time,discriminative information is exploited to alleviate category confusion during feature matching.And with assistance of the category discriminative information captured from both domains,the source classifier can be transferred to the target domain more accurately and boost the performance of target classification.Extensive experiments show the superiority of BDTFL on popular visual cross-domain benchmarks. 展开更多
关键词 transfer learning domain adaptation distribution adaptation discriminative information
下载PDF
Neural Network-Based Limiter with Transfer Learning 被引量:1
10
作者 Rémi Abgrall Maria Han Veiga 《Communications on Applied Mathematics and Computation》 2023年第2期532-572,共41页
Recent works have shown that neural networks are promising parameter-free limiters for a variety of numerical schemes(Morgan et al.in A machine learning approach for detect-ing shocks with high-order hydrodynamic meth... Recent works have shown that neural networks are promising parameter-free limiters for a variety of numerical schemes(Morgan et al.in A machine learning approach for detect-ing shocks with high-order hydrodynamic methods.et al.in J Comput Phys 367:166-191.,2018;Veiga et al.in European Conference on Computational Mechanics andⅦEuropean Conference on Computational Fluid Dynamics,vol.1,pp.2525-2550.ECCM.,2018).Following this trend,we train a neural network to serve as a shock-indicator function using simulation data from a Runge-Kutta discontinuous Galer-kin(RKDG)method and a modal high-order limiter(Krivodonova in J Comput Phys 226:879-896.,2007).With this methodology,we obtain one-and two-dimensional black-box shock-indicators which are then coupled to a standard limiter.Furthermore,we describe a strategy to transfer the shock-indicator to a residual distribution(RD)scheme without the need for a full training cycle and large data-set,by finding a mapping between the solution feature spaces from an RD scheme to an RKDG scheme,both in one-and two-dimensional problems,and on Cartesian and unstruc-tured meshes.We report on the quality of the numerical solutions when using the neural network shock-indicator coupled to a limiter,comparing its performance to traditional lim-iters,for both RKDG and RD schemes. 展开更多
关键词 LIMITERS Neural networks Transfer learning domain adaptation
下载PDF
Tomato detection method using domain adaptive learning for dense planting environments
11
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 plants models domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
下载PDF
Analyzing Cross-domain Transportation Big Data of New York City with Semi-supervised and Active Learning 被引量:4
12
作者 Huiyu Sun Suzanne McIntosh 《Computers, Materials & Continua》 SCIE EI 2018年第10期1-9,共9页
The majority of big data analytics applied to transportation datasets suffer from being too domain-specific,that is,they draw conclusions for a dataset based on analytics on the same dataset.This makes models trained ... The majority of big data analytics applied to transportation datasets suffer from being too domain-specific,that is,they draw conclusions for a dataset based on analytics on the same dataset.This makes models trained from one domain(e.g.taxi data)applies badly to a different domain(e.g.Uber data).To achieve accurate analyses on a new domain,substantial amounts of data must be available,which limits practical applications.To remedy this,we propose to use semi-supervised and active learning of big data to accomplish the domain adaptation task:Selectively choosing a small amount of datapoints from a new domain while achieving comparable performances to using all the datapoints.We choose the New York City(NYC)transportation data of taxi and Uber as our dataset,simulating different domains with 90%as the source data domain for training and the remaining 10%as the target data domain for evaluation.We propose semi-supervised and active learning strategies and apply it to the source domain for selecting datapoints.Experimental results show that our adaptation achieves a comparable performance of using all datapoints while using only a fraction of them,substantially reducing the amount of data required.Our approach has two major advantages:It can make accurate analytics and predictions when big datasets are not available,and even if big datasets are available,our approach chooses the most informative datapoints out of the dataset,making the process much more efficient without having to process huge amounts of data. 展开更多
关键词 Big data taxi and uber domain adaptation active learning semi-supervised learning
下载PDF
Estimating the State of Health for Lithium-ion Batteries:A Particle Swarm Optimization-Assisted Deep Domain Adaptation Approach
13
作者 Guijun Ma Zidong Wang +4 位作者 Weibo Liu Jingzhong Fang Yong Zhang Han Ding Ye Yuan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第7期1530-1543,共14页
The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging t... The state of health(SOH)is a critical factor in evaluating the performance of the lithium-ion batteries(LIBs).Due to various end-user behaviors,the LIBs exhibit different degradation modes,which makes it challenging to estimate the SOHs in a personalized way.In this article,we present a novel particle swarm optimization-assisted deep domain adaptation(PSO-DDA)method to estimate the SOH of LIBs in a personalized manner,where a new domain adaptation strategy is put forward to reduce cross-domain distribution discrepancy.The standard PSO algorithm is exploited to automatically adjust the chosen hyperparameters of developed DDA-based method.The proposed PSODDA method is validated by extensive experiments on two LIB datasets with different battery chemistry materials,ambient temperatures and charge-discharge configurations.Experimental results indicate that the proposed PSO-DDA method surpasses the convolutional neural network-based method and the standard DDA-based method.The Py Torch implementation of the proposed PSO-DDA method is available at https://github.com/mxt0607/PSO-DDA. 展开更多
关键词 Deep transfer learning domain adaptation hyperparameter selection lithium-ion batteries(LIBs) particle swarm optimization state of health estimation(SOH)
下载PDF
Adaptive spatio-temporal attention neural network for cross-database micro-expression recognition
14
作者 Yuhan RAN 《Virtual Reality & Intelligent Hardware》 2023年第2期142-156,共15页
Background The use of micro-expression recognition to recognize human emotions is one of the most critical challenges in human-computer interaction applications. In recent years, cross-database micro-expression recogn... Background The use of micro-expression recognition to recognize human emotions is one of the most critical challenges in human-computer interaction applications. In recent years, cross-database micro-expression recognition(CDMER) has emerged as a significant challenge in micro-expression recognition and analysis. Because the training and testing data in CDMER come from different micro-expression databases, CDMER is more challenging than conventional micro-expression recognition. Methods In this paper, an adaptive spatio-temporal attention neural network(ASTANN) using an attention mechanism is presented to address this challenge. To this end, the micro-expression databases SMIC and CASME II are first preprocessed using an optical flow approach,which extracts motion information among video frames that represent discriminative features of micro-expression.After preprocessing, a novel adaptive framework with a spatiotemporal attention module was designed to assign spatial and temporal weights to enhance the most discriminative features. The deep neural network then extracts the cross-domain feature, in which the second-order statistics of the sample features in the source domain are aligned with those in the target domain by minimizing the correlation alignment(CORAL) loss such that the source and target databases share similar distributions. Results To evaluate the performance of ASTANN, experiments were conducted based on the SMIC and CASME II databases under the standard experimental evaluation protocol of CDMER. The experimental results demonstrate that ASTANN outperformed other methods in relevant crossdatabase tasks. Conclusions Extensive experiments were conducted on benchmark tasks, and the results show that ASTANN has superior performance compared with other approaches. This demonstrates the superiority of our method in solving the CDMER problem. 展开更多
关键词 Cross-database micro-expression recognition Deep learning Attention mechanism domain adaption
下载PDF
Multi-view Feature Learning for the Over-penalty in Adversarial Domain Adaptation
15
作者 Yuhong Zhang Jianqing Wu +1 位作者 Qi Zhang Xuegang Hu 《Data Intelligence》 EI 2024年第1期183-200,共18页
Domain adaptation aims to transfer knowledge from the labeled source domain to an unlabeled target domain that follows a similar but different distribution.Recently,adversarial-based methods have achieved remarkable s... Domain adaptation aims to transfer knowledge from the labeled source domain to an unlabeled target domain that follows a similar but different distribution.Recently,adversarial-based methods have achieved remarkable success due to the excellent performance of domain-invariant feature presentation learning.However,the adversarial methods learn the transferability at the expense of the discriminability in feature representation,leading to low generalization to the target domain.To this end,we propose a Multi-view Feature Learning method for the Over-penalty in Adversarial Domain Adaptation.Specifically,multi-view representation learning is proposed to enrich the discriminative information contained in domain-invariant feature representation,which will counter the over-penalty for discriminability in adversarial training.Besides,the class distribution in the intra-domain is proposed to replace that in the inter-domain to capture more discriminative information in the learning of transferrable features.Extensive experiments show that our method can improve the discriminability while maintaining transferability and exceeds the most advanced methods in the domain adaptation benchmark datasets. 展开更多
关键词 domain adaptation adversarial learning multi-view learning
原文传递
Decoding of Raman spectroscopy-encoded suspension arrays based on the detail constraint cycle domain adaptive model
16
作者 Yu Yao Kaiwen Xue +3 位作者 Liwang Liu Shanshan Zhu Chengfeng Yue Yanhong Ji 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2022年第4期116-127,共12页
Previous studies have already shown that Raman spectroscopy can be used in the encoding of suspension array technology.However,almost all existing convolutional neural network-based decoding approaches rely on supervi... Previous studies have already shown that Raman spectroscopy can be used in the encoding of suspension array technology.However,almost all existing convolutional neural network-based decoding approaches rely on supervision with ground truth,and may not be well generalized to unseen datasets,which were collected under different experimental conditions,applying with the same coded material.In this study,we propose an improved model based on CyCADA,named as Detail constraint Cycle Domain Adaptive Model(DCDA).DCDA implements the clasification of unseen datasets through domain adaptation,adapts representations at the encode level with decoder-share,and enforces coding features while leveraging a feat loss.To improve detailed structural constraints,DCDA takes downsample connection and skips connection.Our model improves the poor generalization of existing models and saves the cost of the labeling process for unseen target datasets.Compared with other models,extensive experiments and ablation studies show the superiority of DCDA in terms of classification stability and generalization.The model proposed by the research achieves a classification with an accuracy of 100%when applied in datasets,in which the spectrum in the source domain is far less than the target domain. 展开更多
关键词 domain adaption suspension arrays deep learning Raman spectrum generalization.
下载PDF
基于Active Learning的中文分词领域自适应 被引量:7
17
作者 许华婷 张玉洁 +3 位作者 杨晓晖 单华 徐金安 陈钰枫 《中文信息学报》 CSCD 北大核心 2015年第5期55-62,共8页
在新闻领域标注语料上训练的中文分词系统在跨领域时性能会有明显下降。针对目标领域的大规模标注语料难以获取的问题,该文提出Active learning算法与n-gram统计特征相结合的领域自适应方法。该方法通过对目标领域文本与已有标注语料的... 在新闻领域标注语料上训练的中文分词系统在跨领域时性能会有明显下降。针对目标领域的大规模标注语料难以获取的问题,该文提出Active learning算法与n-gram统计特征相结合的领域自适应方法。该方法通过对目标领域文本与已有标注语料的差异进行统计分析,选择含有最多未标记过的语言现象的小规模语料优先进行人工标注,然后再结合大规模文本中的n-gram统计特征训练目标领域的分词系统。该文采用了CRF训练模型,并在100万句的科技文献领域上,验证了所提方法的有效性,评测数据为人工标注的300句科技文献语料。实验结果显示,在科技文献测试语料上,基于Active Learning训练的分词系统在各项评测指标上均有提高。 展开更多
关键词 中文分词 领域自适应 主动学习
下载PDF
Dynamic Distribution Adaptation Based Transfer Network for Cross Domain Bearing Fault Diagnosis 被引量:4
18
作者 Yixiao Liao Ruyi Huang +2 位作者 Jipu Li Zhuyun Chen Weihua Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期94-103,共10页
In machinery fault diagnosis,labeled data are always difficult or even impossible to obtain.Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagno... In machinery fault diagnosis,labeled data are always difficult or even impossible to obtain.Transfer learning can leverage related fault diagnosis knowledge from fully labeled source domain to enhance the fault diagnosis performance in sparsely labeled or unlabeled target domain,which has been widely used for cross domain fault diagnosis.However,existing methods focus on either marginal distribution adaptation(MDA)or conditional distribution adaptation(CDA).In practice,marginal and conditional distributions discrepancies both have significant but different influences on the domain divergence.In this paper,a dynamic distribution adaptation based transfer network(DDATN)is proposed for cross domain bearing fault diagnosis.DDATN utilizes the proposed instance-weighted dynamic maximum mean discrepancy(IDMMD)for dynamic distribution adaptation(DDA),which can dynamically estimate the influences of marginal and conditional distribution and adapt target domain with source domain.The experimental evaluation on cross domain bearing fault diagnosis demonstrates that DDATN can outperformance the state-of-the-art cross domain fault diagnosis methods. 展开更多
关键词 Cross domain fault diagnosis Dynamic distribution adaptation Instance-weighted dynamic MMD Transfer learning
下载PDF
Representation learning via an integrated autoencoder for unsupervised domain adaptation 被引量:1
19
作者 Yi ZHU Xindong WU +2 位作者 Jipeng QIANG Yunhao YUAN Yun LI 《Frontiers of Computer Science》 SCIE EI CSCD 2023年第5期75-87,共13页
The purpose of unsupervised domain adaptation is to use the knowledge of the source domain whose data distribution is different from that of the target domain for promoting the learning task in the target domain.The k... The purpose of unsupervised domain adaptation is to use the knowledge of the source domain whose data distribution is different from that of the target domain for promoting the learning task in the target domain.The key bottleneck in unsupervised domain adaptation is how to obtain higher-level and more abstract feature representations between source and target domains which can bridge the chasm of domain discrepancy.Recently,deep learning methods based on autoencoder have achieved sound performance in representation learning,and many dual or serial autoencoderbased methods take different characteristics of data into consideration for improving the effectiveness of unsupervised domain adaptation.However,most existing methods of autoencoders just serially connect the features generated by different autoencoders,which pose challenges for the discriminative representation learning and fail to find the real cross-domain features.To address this problem,we propose a novel representation learning method based on an integrated autoencoders for unsupervised domain adaptation,called IAUDA.To capture the inter-and inner-domain features of the raw data,two different autoencoders,which are the marginalized autoencoder with maximum mean discrepancy(mAE)and convolutional autoencoder(CAE)respectively,are proposed to learn different feature representations.After higher-level features are obtained by these two different autoencoders,a sparse autoencoder is introduced to compact these inter-and inner-domain representations.In addition,a whitening layer is embedded for features processed before the mAE to reduce redundant features inside a local area.Experimental results demonstrate the effectiveness of our proposed method compared with several state-of-the-art baseline methods. 展开更多
关键词 unsupervised domain adaptation representation learning marginalized autoencoder convolutional autoen-coder sparse autoencoder
原文传递
Transfer Learning Algorithm Design for Feature Transfer Problem in Motor Imagery Brain-computer Interface
20
作者 Yu Zhang Huaqing Li +3 位作者 Heng Dong Zheng Dai Xing Chen Zhuoming Li 《China Communications》 SCIE CSCD 2022年第2期39-46,共8页
The non-stationary of the motor imagery electroencephalography(MI-EEG)signal is one of the main limitations for the development of motor imagery brain-computer interfaces(MI-BCI).The nonstationary of the MI-EEG signal... The non-stationary of the motor imagery electroencephalography(MI-EEG)signal is one of the main limitations for the development of motor imagery brain-computer interfaces(MI-BCI).The nonstationary of the MI-EEG signal and the changes of the experimental environment make the feature distribution of the testing set and training set deviates,which reduces the classification accuracy of MI-BCI.In this paper,we propose a Kullback–Leibler divergence(KL)-based transfer learning algorithm to solve the problem of feature transfer,the proposed algorithm uses KL to measure the similarity between the training set and the testing set,adds support vector machine(SVM)classification probability to classify and weight the covariance,and discards the poorly performing samples.The results show that the proposed algorithm can significantly improve the classification accuracy of the testing set compared with the traditional algorithms,especially for subjects with medium classification accuracy.Moreover,the algorithm based on transfer learning has the potential to improve the consistency of feature distribution that the traditional algorithms do not have,which is significant for the application of MI-BCI. 展开更多
关键词 brain-computer interface motor imagery feature transfer transfer learning domain adaptation
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部