The dynamic tire force of heavy vehicle is a primary reason for road damage. This paper presents a mathematic model to restore the interacting process of vehicle-tire-road system and tries to find out the mechanics of...The dynamic tire force of heavy vehicle is a primary reason for road damage. This paper presents a mathematic model to restore the interacting process of vehicle-tire-road system and tries to find out the mechanics of interaction. A nonlinear tri-axle vehicle model with IBS (integral balanced suspension) is firstly proposed based on the detailed analysis of structural features of a heavy vehicle (DFL1250). The results indicate that the nonlinearities in the vehicle suspension contribute to improvement of ride comfort and to the reduction of dynamic tire force. Furthermore, an FRC (flexible rolling contact) tire model with the enveloping characteristics is added into the IBS model. The tire model considers both the tire contact history with rough road profile and the uneven distribution characteristics of vertical load. The FRC model is able to remove medium and high vibration components from uneven road profile due to its filtering feature. It is expected that these results could supply a new idea for vehicle-road interaction research.展开更多
基金supported by the NSFC Key Program (Grant No. 10932006)Key Project of Chinese Ministry of Education (Grant No. 210023)the National Natural Science Foundation of China (Grant No. 11072159)
文摘The dynamic tire force of heavy vehicle is a primary reason for road damage. This paper presents a mathematic model to restore the interacting process of vehicle-tire-road system and tries to find out the mechanics of interaction. A nonlinear tri-axle vehicle model with IBS (integral balanced suspension) is firstly proposed based on the detailed analysis of structural features of a heavy vehicle (DFL1250). The results indicate that the nonlinearities in the vehicle suspension contribute to improvement of ride comfort and to the reduction of dynamic tire force. Furthermore, an FRC (flexible rolling contact) tire model with the enveloping characteristics is added into the IBS model. The tire model considers both the tire contact history with rough road profile and the uneven distribution characteristics of vertical load. The FRC model is able to remove medium and high vibration components from uneven road profile due to its filtering feature. It is expected that these results could supply a new idea for vehicle-road interaction research.