As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data so...As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data solutions have been applied to environmental pollution control audits,exerting a significant impact.This paper presents the current situation of environmental pollution audits,summarizing the application of big data from the perspectives of both domestic and international research.In terms of data collection and data analysis for environmental pollution audits,cloud platform technology,and visualization technology are selected based on multiple data sources.The impact in the field of environmental pollution control audits is further analyzed.It is found that the environmental pollution audit cloud platform is not yet perfect,the technical skills of audit personnel are insufficient,and some technologies are not mature.Relevant suggestions are put forward to provide a reference for the future development of big data technology and its integration with environmental pollution control audits.展开更多
Environment parameters are the main factors affecting the growth and development of Agaricus bisporus.Because of the requirements of environmental conditions for high-efficiency industrialized production of Agaricus b...Environment parameters are the main factors affecting the growth and development of Agaricus bisporus.Because of the requirements of environmental conditions for high-efficiency industrialized production of Agaricus bisporus,equipments for environment control were developed.Based on the variable operating equipment,a multi-factor fuzzy controller was designed to realize the comprehensive control of ambient temperature,humidity,CO2 concentration,and the temperature and moisture of the compost.The test results showed that the temperature control error was less than±0.5°C and the response speed was more than 0.5°C/h;The control error of ambient humidity was less than±2%RH,and the response speed was more than 9%RH per hour;The moistures at different points in compost ranged from 50%to 70%with a standard deviation of 4.04.The control accuracy of environmental CO2 concentration was within 200μmol/mol.The overall performance of the control system was stable and reliable,which could meet the requirements of environment factors for the growth of Agaricus bisporus.The system can provide technical support and reference for the automatic and precise control of the environment during the industrialized production of Agaricus bisporus.展开更多
The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monito...The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monitor the temperature,humidity,light,wind direction,wind speed,CO2,NH3and other parameters.On-line real-time data collection was achieved.The expert system was constructed to control the temperature in piggery below 30℃,to control the air and mattress humidities higher than 65%.Under the conditions of different season or different wind speed,even in day and night,the control actuators were different.The actuators included fanning wet curtain,lighting,micro spraying,spraying,propeller fan,electric aluminum alloy shutter and spraying systems on the roof.The actuators were integrated,and they control the piggery environment simultaneously.The system also designed the remote video monitor interface,parameter-monitoring curved interface and operation interface,which provided a good man-machine interface.展开更多
The research objective of this review is to discuss the rationale that led to the development of Controlled Environment Agriculture (CEA) and investigate this agricultural approach as a potential solution to mitigate ...The research objective of this review is to discuss the rationale that led to the development of Controlled Environment Agriculture (CEA) and investigate this agricultural approach as a potential solution to mitigate the increased pressures on food security. It describes the need for urban cultivation systems using controlled environments and how they can be harnessed to address pressures facing food security. The factors that have contributed to the growth of CEAs, education, environmental justice, and the advantages and disadvantages of growing crops in CEAs in urban areas will be discussed. The article reviews global urban cultivation systems using controlled environments, by identifying the technologies needed to establish them. The practice of CEA is being increasingly adopted worldwide and we describe urban agriculture and compare it with traditional growing systems. Indoor farming systems that integrate into existing urban infrastructure such as vertical farming and plant factories using CEAs are discussed. Indoor farming gives urban areas enhanced access to food sources, but the cost is high, however decreasing due to recent technological advances. The current review extends the literature by incorporating recent research on the topic of agriculture in urban areas and food security. This review seeks to provide additional information regarding the viability of CEA in urban areas.展开更多
The integration of sustainable technologies in waste management systems has become imperative in addressing the escalating challenges of agricultural productivity and sustainability. Plugs are essential when starting ...The integration of sustainable technologies in waste management systems has become imperative in addressing the escalating challenges of agricultural productivity and sustainability. Plugs are essential when starting crop production in controlled environment agriculture (CEA) setups and greenhouses. Horticultural crops such as vegetables, fruiting, and ornamental plants that utilize plugs have demonstrated higher success rates, healthier plants, and higher total yields. The APS Laboratory for Sustainable Agriculture explored the innovative utilization of digestate from the Home Water-Energy-Food Systems (H-WEF). The H-WEF system converts household food waste into biogas, electricity, and nutrient-rich digestate. The digestate from the H-WEF system was used to produce agricultural plugs, presenting a novel approach to circular resource utilization. We carried out the growth of Rex Butterhead Lettuce Latuca sativa plugs with 1) control system (synthetic fertilizer) and seven different treatments, 2) 5% Digestate—95% RO Water (5D–95RO);3) 10% Digestate—90% RO Water (10D–90RO);4) 15% Digestate—85% RO Water (15D–85RO);5) 20% Digestate—80% RO Water (20D–80RO);6) 25% Digestate—75% RO Water (25D–75RO);7) 30% Digestate—70% RO Water (30D–70RO);8) 35% Digestate—65% RO Water (35D–65RO). The plugs were cultivated for 15 days in a controlled environment until two leaves had developed after the cotyledon. After 15 days, we collected data on wet weight (g), plug head area (cm2), total leaf area (cm2), total chlorophyll content (mg/cm2), and dry weight (g). In addition, we collected data on the Leaf Area Index (LAI, cm2/cm2) and Specific Leaf Area (SLA, cm2/g). The synthetic fertigation yielded a higher wet weight than the following treatments: 5D–95RO, 10D–90RO, and 35D–65RO. While the 30D–70RO treatment produced a larger plug head than all other treatments. The digestate-based fertilizers were comparable to the synthetic fertilizer at dilutions of 25D–75RO and 30D–70RO. This study underscores the viability of using digestate for plug production, providing crucial insights for growers navigating the challenges of sustainable agricultural practices.展开更多
To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was resea...To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was researched and developed core of this technique. There are three aspects of controlling ecological environments, to dispose and renew before exploitation, to protect surface ecological environments in the exploitative process and to repair and build up after exploitation. Based on the moving law of overburden strata in shallow seam, the surface subsidence law and the growth law of vegetation in subsidence mine area, the integrated controlling technique has been developed synthetically by methods of theoretic analysis, laboratory simulation, numerical calculation, commercial test etc.. It includes the key techniques of aquifer-protective mining, filtering and purging of mine water through goaf, preventing and extinguishing fire in shallow seam no-rock roadway layout and waste disposal in underground, frame-building ecological functional sphere before exploitation, frame-building the ecological cycle using system after mining and so on.展开更多
Conventional soil-based agriculture is resource-intensive, utilizing large amounts of land and water, thereby placing a strain on Earth’s natural resources. Soil-based agricultural techniques create environmental iss...Conventional soil-based agriculture is resource-intensive, utilizing large amounts of land and water, thereby placing a strain on Earth’s natural resources. Soil-based agricultural techniques create environmental issues such as soil degradation, deforestation, and groundwater pollution from the mass implementation of fertilizers and pesticides. Agricultural crop production using hydroponics has shown promise to be less resource intensive and provide a faster turnaround in crop production. Soilless cultivation using hydroponics promises to relieve some pressure on Earth’s ecosystems and resources by utilizing lesser land and water footprint. The APS Laboratory for Sustainable Food at Florida Gulf Coast University (FGCU) compared the growth of Lettuce Lactuca sativa “Rex Butterhead” crop grown using soil and soilless methods to analyze the growth performance in each setting. Crops grown in the soil-based medium were raised in the FGCU Food Forest, used a mix of soil and potting mix, watered regularly, and followed standard Integrated Pest Management (IPM) practices. Crops grown hydroponically were grown in a thermally insulated grow tent with an artificial lighting source, ventilation, environmental controls, and the Deep-Water Culture (DWC) method. Lettuce plugs were grown for 15 days in controlled environments until two leaves after the cotyledons had developed and were ready for transplant. Plugs were transplanted into a 4 × 6 matrix at the FGCU Food Forest and the DWC growth system. Crops were grown to full bloom and ready for harvest in the soil (60 days) and soilless (30 days) based setups. We collected crop growth data, including wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (μmol/m<sup>2</sup>). From the collected data, we derived the Specific Leaf Area (SLA, cm<sup>2</sup>/g) and biomass productivity (kg/m<sup>2</sup>). Descriptive statistics were used to describe the collected and derived data. We investigated the slopes of regression lines for each growth curve which derived the differences in biomass and productivity parameters between lettuce grown using soil and hydroponics. Both growing methods can grow lettuce crops to full bloom and to adequate harvest weight. The biomass parameters and productivity differ significantly between the growing methods. The lettuce crops grown using hydroponics increase in wet weight statistically and significantly faster than those grown in soil (p < 0.0001). Therefore, we determined that a hydroponic method of crop production may provide better crop output and biomass indicators measured than soil-based growth.展开更多
文摘As China strives towards the second centenary goal,increasing attention is being paid to environmental pollution and other related issues.Concurrently,with the rapid development of big data technology,many big data solutions have been applied to environmental pollution control audits,exerting a significant impact.This paper presents the current situation of environmental pollution audits,summarizing the application of big data from the perspectives of both domestic and international research.In terms of data collection and data analysis for environmental pollution audits,cloud platform technology,and visualization technology are selected based on multiple data sources.The impact in the field of environmental pollution control audits is further analyzed.It is found that the environmental pollution audit cloud platform is not yet perfect,the technical skills of audit personnel are insufficient,and some technologies are not mature.Relevant suggestions are put forward to provide a reference for the future development of big data technology and its integration with environmental pollution control audits.
基金The authors acknowledge Mr.Jiangtao Zhang from Luoyang Aojite Biotechnology Co.,Ltd.for his technical support for the cultivation of Agaricus bisporus during the experiment.This study was supported by the National Key R&D Plan Key projects of Scientific and technological Innovation Cooperation between Governments(Grant No.2019YFE0125100)and the Basic Research Project of the Key Scientific Research Project Plan of Henan University(Grant No.19zx015).
文摘Environment parameters are the main factors affecting the growth and development of Agaricus bisporus.Because of the requirements of environmental conditions for high-efficiency industrialized production of Agaricus bisporus,equipments for environment control were developed.Based on the variable operating equipment,a multi-factor fuzzy controller was designed to realize the comprehensive control of ambient temperature,humidity,CO2 concentration,and the temperature and moisture of the compost.The test results showed that the temperature control error was less than±0.5°C and the response speed was more than 0.5°C/h;The control error of ambient humidity was less than±2%RH,and the response speed was more than 9%RH per hour;The moistures at different points in compost ranged from 50%to 70%with a standard deviation of 4.04.The control accuracy of environmental CO2 concentration was within 200μmol/mol.The overall performance of the control system was stable and reliable,which could meet the requirements of environment factors for the growth of Agaricus bisporus.The system can provide technical support and reference for the automatic and precise control of the environment during the industrialized production of Agaricus bisporus.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303094)International Science and Technology Cooperation Project of China(2012DFA31120)National Key Technology Research and Development Program(2012BAD14B15)
文摘The design and assembly of environmental monitoring and control system for large-scale pig house with fermentation bed helped to solve the problem of environmental automatic control in piggery.The sensors would monitor the temperature,humidity,light,wind direction,wind speed,CO2,NH3and other parameters.On-line real-time data collection was achieved.The expert system was constructed to control the temperature in piggery below 30℃,to control the air and mattress humidities higher than 65%.Under the conditions of different season or different wind speed,even in day and night,the control actuators were different.The actuators included fanning wet curtain,lighting,micro spraying,spraying,propeller fan,electric aluminum alloy shutter and spraying systems on the roof.The actuators were integrated,and they control the piggery environment simultaneously.The system also designed the remote video monitor interface,parameter-monitoring curved interface and operation interface,which provided a good man-machine interface.
文摘The research objective of this review is to discuss the rationale that led to the development of Controlled Environment Agriculture (CEA) and investigate this agricultural approach as a potential solution to mitigate the increased pressures on food security. It describes the need for urban cultivation systems using controlled environments and how they can be harnessed to address pressures facing food security. The factors that have contributed to the growth of CEAs, education, environmental justice, and the advantages and disadvantages of growing crops in CEAs in urban areas will be discussed. The article reviews global urban cultivation systems using controlled environments, by identifying the technologies needed to establish them. The practice of CEA is being increasingly adopted worldwide and we describe urban agriculture and compare it with traditional growing systems. Indoor farming systems that integrate into existing urban infrastructure such as vertical farming and plant factories using CEAs are discussed. Indoor farming gives urban areas enhanced access to food sources, but the cost is high, however decreasing due to recent technological advances. The current review extends the literature by incorporating recent research on the topic of agriculture in urban areas and food security. This review seeks to provide additional information regarding the viability of CEA in urban areas.
文摘The integration of sustainable technologies in waste management systems has become imperative in addressing the escalating challenges of agricultural productivity and sustainability. Plugs are essential when starting crop production in controlled environment agriculture (CEA) setups and greenhouses. Horticultural crops such as vegetables, fruiting, and ornamental plants that utilize plugs have demonstrated higher success rates, healthier plants, and higher total yields. The APS Laboratory for Sustainable Agriculture explored the innovative utilization of digestate from the Home Water-Energy-Food Systems (H-WEF). The H-WEF system converts household food waste into biogas, electricity, and nutrient-rich digestate. The digestate from the H-WEF system was used to produce agricultural plugs, presenting a novel approach to circular resource utilization. We carried out the growth of Rex Butterhead Lettuce Latuca sativa plugs with 1) control system (synthetic fertilizer) and seven different treatments, 2) 5% Digestate—95% RO Water (5D–95RO);3) 10% Digestate—90% RO Water (10D–90RO);4) 15% Digestate—85% RO Water (15D–85RO);5) 20% Digestate—80% RO Water (20D–80RO);6) 25% Digestate—75% RO Water (25D–75RO);7) 30% Digestate—70% RO Water (30D–70RO);8) 35% Digestate—65% RO Water (35D–65RO). The plugs were cultivated for 15 days in a controlled environment until two leaves had developed after the cotyledon. After 15 days, we collected data on wet weight (g), plug head area (cm2), total leaf area (cm2), total chlorophyll content (mg/cm2), and dry weight (g). In addition, we collected data on the Leaf Area Index (LAI, cm2/cm2) and Specific Leaf Area (SLA, cm2/g). The synthetic fertigation yielded a higher wet weight than the following treatments: 5D–95RO, 10D–90RO, and 35D–65RO. While the 30D–70RO treatment produced a larger plug head than all other treatments. The digestate-based fertilizers were comparable to the synthetic fertilizer at dilutions of 25D–75RO and 30D–70RO. This study underscores the viability of using digestate for plug production, providing crucial insights for growers navigating the challenges of sustainable agricultural practices.
文摘To enclose the interactive relation between the underground mining with suitable protection for surface ecological environments and surface prevention of ecological environments adapting to mining disturbing was researched and developed core of this technique. There are three aspects of controlling ecological environments, to dispose and renew before exploitation, to protect surface ecological environments in the exploitative process and to repair and build up after exploitation. Based on the moving law of overburden strata in shallow seam, the surface subsidence law and the growth law of vegetation in subsidence mine area, the integrated controlling technique has been developed synthetically by methods of theoretic analysis, laboratory simulation, numerical calculation, commercial test etc.. It includes the key techniques of aquifer-protective mining, filtering and purging of mine water through goaf, preventing and extinguishing fire in shallow seam no-rock roadway layout and waste disposal in underground, frame-building ecological functional sphere before exploitation, frame-building the ecological cycle using system after mining and so on.
文摘Conventional soil-based agriculture is resource-intensive, utilizing large amounts of land and water, thereby placing a strain on Earth’s natural resources. Soil-based agricultural techniques create environmental issues such as soil degradation, deforestation, and groundwater pollution from the mass implementation of fertilizers and pesticides. Agricultural crop production using hydroponics has shown promise to be less resource intensive and provide a faster turnaround in crop production. Soilless cultivation using hydroponics promises to relieve some pressure on Earth’s ecosystems and resources by utilizing lesser land and water footprint. The APS Laboratory for Sustainable Food at Florida Gulf Coast University (FGCU) compared the growth of Lettuce Lactuca sativa “Rex Butterhead” crop grown using soil and soilless methods to analyze the growth performance in each setting. Crops grown in the soil-based medium were raised in the FGCU Food Forest, used a mix of soil and potting mix, watered regularly, and followed standard Integrated Pest Management (IPM) practices. Crops grown hydroponically were grown in a thermally insulated grow tent with an artificial lighting source, ventilation, environmental controls, and the Deep-Water Culture (DWC) method. Lettuce plugs were grown for 15 days in controlled environments until two leaves after the cotyledons had developed and were ready for transplant. Plugs were transplanted into a 4 × 6 matrix at the FGCU Food Forest and the DWC growth system. Crops were grown to full bloom and ready for harvest in the soil (60 days) and soilless (30 days) based setups. We collected crop growth data, including wet weight (g), dry weight (g), leaf area (cm<sup>2</sup>), and chlorophyll concentration (μmol/m<sup>2</sup>). From the collected data, we derived the Specific Leaf Area (SLA, cm<sup>2</sup>/g) and biomass productivity (kg/m<sup>2</sup>). Descriptive statistics were used to describe the collected and derived data. We investigated the slopes of regression lines for each growth curve which derived the differences in biomass and productivity parameters between lettuce grown using soil and hydroponics. Both growing methods can grow lettuce crops to full bloom and to adequate harvest weight. The biomass parameters and productivity differ significantly between the growing methods. The lettuce crops grown using hydroponics increase in wet weight statistically and significantly faster than those grown in soil (p < 0.0001). Therefore, we determined that a hydroponic method of crop production may provide better crop output and biomass indicators measured than soil-based growth.