Response speed is vital for the railway environment monitoring system,especially for the sudden-onset disasters.The edge-cloud collaboration scheme is proved efficient to reduce the latency.However,the data characteri...Response speed is vital for the railway environment monitoring system,especially for the sudden-onset disasters.The edge-cloud collaboration scheme is proved efficient to reduce the latency.However,the data characteristics and communication demand of the tasks in the railway environment monitoring system are all different and changeable,and the latency contribution of each task to the system is discrepant.Hence,two valid latency minimization strategies based on the edge-cloud collaboration scheme is developed in this paper.First,the processing resources are allocated to the tasks based on the priorities,and the tasks are processed parallly with the allocated resources to minimize the system valid latency.Furthermore,considering the differences in the data volume of the tasks,which will induce the waste of the resources for the tasks finished in advance.Thus,the tasks with similar priorities are graded into the same group,and the serial and parallel processing strategies are performed intra-group and inter-group simultaneously.Compared with the other four strategies in four railway monitoring scenarios,the proposed strategies proved latency efficiency to the high-priority tasks,and the system valid latency is reduced synchronously.The performance of the railway environment monitoring system in security and efficiency will be promoted greatly with the proposed scheme and strategies.展开更多
[Objective] The aim was to study on the feasibility to take Rana cancrivora, the only amphibian inhabiting mangrove, as indicator species for environment monitoring of mangrove. [Methods] Rana cancrivorae were collect...[Objective] The aim was to study on the feasibility to take Rana cancrivora, the only amphibian inhabiting mangrove, as indicator species for environment monitoring of mangrove. [Methods] Rana cancrivorae were collected in July and August of 2009 from two different microhabitats, including the pier and the core mangrove area of National Dongzhai Harbor Mangrove Reserve in Hainan Province. In addition, examination and analysis were conducted on activity of superoxide dismutase (SOD), catalase (CAT), acetylcholine esterase (AChE), and inducible nitric oxide synthase (iNOS), and content of malonaldehyde (MDA) in its liver and muscle. Furthermore, indices of hepar/body, kidney/body and spleen/body were measured to make a comprehensive evaluation on Rana cancrivora stress from environment and mangrove quality in different microhabitats. [Result] In mangrove habitat, indices of hepar/body, kidney/body and spleen/body of Rana cancrivora were all lower than that in pier and only index of kidney/body differed significantly (P0.05); the four enzyme activities were all higher than that in pier and activities of SOD and CAT differed significantly (P0.05). In addition, MDA content was lower than that in pier significantly (P0.05). The result indicated that antioxidant enzyme activity of Rana cancrivora in mangrove habitat was higher than that in pier individually, lipid peroxidation and the stress were lower correspondingly. [Conclusion] Because of human intervention and travelling development, quality of pier habitat was lower than that in mangrove core area, and stress for Rana cancrivora by environment was smaller than that in pier, correspondingly. Therefore, Rana cancrivora can be the indicator species for environment monitoring of mangrove.展开更多
Environmental monitoring is essential for accessing and avoiding the undesirable situations in industries along with ensuring the safety of workers.Moreover,inspecting and monitoring of environmental parameters by hum...Environmental monitoring is essential for accessing and avoiding the undesirable situations in industries along with ensuring the safety of workers.Moreover,inspecting and monitoring of environmental parameters by humans lead to various health concerns,which in turn brings to the requirement of monitoring the environment by robotics.In this paper,we have designed and implemented a cost-efficient robotic vehicle for the computation of various environmental parameters such as temperature,radiation,smoke,and pressure with the help of sensors.Furthermore,the robotic vehicle is designed in such a way that it can be dually controlled by using the remote control along with the distant computer.In addition,contrary to the existing researches,the GSM modules are used to achieve the two-way long distance communication between the robotic vehicle and the distant computer.On the distant computer,the above-mentioned environmental parameters can be monitored along with controlling the robotic vehicle with the help of Graphical User Interface(GUI).In order to fulfill the given tasks,we have proposed two algorithms implemented at the robotic vehicle and the distant computer respectively in this paper.The final results validate the proposed algorithms where the above-mentioned environmental parameters can be monitored along with the smooth-running operation of the robotic vehicle.展开更多
Monitoring techniques are a key technology for examining the conditions in various scenarios, e.g., structural conditions, weather conditions, and disasters. In order to understand such scenarios, the appropriate extr...Monitoring techniques are a key technology for examining the conditions in various scenarios, e.g., structural conditions, weather conditions, and disasters. In order to understand such scenarios, the appropriate extraction of their features from observation data is important. This paper proposes a monitoring method that allows sound environments to be expressed as a sound pattern. To this end, the concept of synesthesia is exploited. That is, the keys, tones, and pitches of the monitored sound are expressed using the three elements of color, that is, the hue, saturation, and brightness, respectively. In this paper, it is assumed that the hue, saturation, and brightness can be detected from the chromagram, sonogram, and sound spectrogram, respectively, based on a previous synesthesia experiment. Then, the sound pattern can be drawn using color, yielding a “painted sound map.” The usefulness of the proposed monitoring technique is verified using environmental sound data observed at a galleria.展开更多
How ecological environmental monitoring provides scientific and technological strength for ecological environmental management was studied.In recent years,the Ecological Environment Monitoring Station of Yanshan Branc...How ecological environmental monitoring provides scientific and technological strength for ecological environmental management was studied.In recent years,the Ecological Environment Monitoring Station of Yanshan Branch,Wenshan Prefecture Ecological Environment Bureau,Yunnan Province has developed into a provincial environmental education base,a provincial science education base,and a national environmental protection facility open to the public by relying on monitoring equipment and facilities,personnel training,monitoring and law enforcement interaction,analysis of abnormal data,and countermeasures and suggestions were put forward for the problems in the development.展开更多
Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agric...Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agricultural monitoring,they often face limitations such as high power consumption,restricted mobility,complex deployment requirements,and inadequate security measures for data access.This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings.Our system strategically combines power efficiency,portability,and secure access capabilities,assisting farmers in monitoring and tracking crop environmental conditions.The proposed system includes a remote camera that captures images of surrounding plants and a sensor module that regularly monitors various environmental factors,including temperature,humidity,and soil moisture.We implement power management strategies to minimize energy consumption compared to existing solutions.Unlike conventional systems,our implementation utilizes the Amazon Web Services(AWS)cloud platform for reliable data storage and processing while incorporating comprehensive security measures,including Two-Factor Authentication(2FA)and JSON Web Tokens(JWT),features often overlooked in current agricultural IoT solutions.Users can access this secure monitoring system via a developed Android application,providing convenient mobile access to the gathered plant data.We validate our system’s advantages by implementing it with two potted garlic plants on Okayama University’s rooftop.Our evaluation demonstrates high sensor reliabil-ity,with strong correlations between sensor readings and reference data,achieving determination coefficients(R2)of 0.979 for temperature and 0.750 for humidity measurements.The implemented power management strategies extend battery life to 10 days on a single charge,significantly outperforming existing systems that typically require daily recharging.Furthermore,our dual-layer security implementation utilizing 2FA and JWT successfully protects sensitive agricultural data from unauthorized access.展开更多
Agricultural environmental remote monitoring,data collection and network transmission are the development directions of modern agriculture.The embedded video remote monitoring system is designed with DSP processor DM6...Agricultural environmental remote monitoring,data collection and network transmission are the development directions of modern agriculture.The embedded video remote monitoring system is designed with DSP processor DM642,which can collect the video signal of agricultural environment and biological information,as well as complete the extraction of video signal and network transmission.This system can be applied to the agro-ecological and environmental resources monitoring,agricultural disaster monitoring and warning and other digital agricultures.展开更多
Volatile organic compounds(VOC)gas detection devices based on semiconductor sensors have become a common method due to their low cost,simple principle,and small size.However,with the continuous development of material...Volatile organic compounds(VOC)gas detection devices based on semiconductor sensors have become a common method due to their low cost,simple principle,and small size.However,with the continuous development of materials science,various new materials have been applied in the fabrication of gas sensors,but these new materials have more stringent requirements for operating temperature,which cannot be met by existing sensor modules on the market.Therefore,this paper proposes a temperature-adjustable sensor module and designs an environmental monitoring system based on the STM32F103RET6 microprocessor.This system primarily utilizes multiple semiconductor gas sensors to monitor and record the concentrations of various harmful gases in different environments.It can also monitor real-time temperature,humidity,and latitude and longitude in the current environment,and upload the data to the Internet of Things via 4G communication.This system has the advantages of small size,portability,and low cost.Experimental results show that the sensor module can achieve precise control of operating temperature to a certain extent,with an average temperature error of approximately 3%.The monitoring system demonstrates a certain level of accuracy in detecting target gases and can promptly upload the data to a cloud platform for storage and processing.A comparison with professional testing equipment shows that the sensitivity curves of each sensor exhibit similarity.This study provides engineering and technical references for the application of VOC gas sensors.展开更多
The space environment monitor(SEM)aboard FY-2 satellite consists of the high energy particle detector(HEPD)and the solar X-ray flux detector(SXFD).The SEM can provide real-time monitoring of flare and solar proton eve...The space environment monitor(SEM)aboard FY-2 satellite consists of the high energy particle detector(HEPD)and the solar X-ray flux detector(SXFD).The SEM can provide real-time monitoring of flare and solar proton event for its operation at geostationary orbit and is also the first Chinese space system for monitoring and alerting solar proton event.During the 23rd solar maximum cycle,almost all the solar proton events that took place in this period are monitored and some of them are predicted successfully by analyzing the characteristics of X-ray flare monitored by the SEM.Some basic variation characteristics of particle at geostationary orbit are found such as day-night periodic variation of particle flux,the electron flux with energy>1.4 MeV in the scope from 10 to 200/cm^(2).s-sr and the proton flux with energy>1.1 MeV in the scope from 600 to 8000/cm^(2)-s.sr during the time with no magnetic storm and solar eruption.展开更多
Distributed wireless sensor networks have been shown to be effective for environmental monitoring tasks,in which multiple sensors are deployed in a wide range of the environments to collect information or monitor a pa...Distributed wireless sensor networks have been shown to be effective for environmental monitoring tasks,in which multiple sensors are deployed in a wide range of the environments to collect information or monitor a particular event,Wireless sensor networks,consisting of a large number of interacting sensors,have been successful in a variety of applications where they are able to share information using different transmission protocols through the communication network.However,the irregular and dynamic environment requires traditional wireless sensor networks to have frequent communications to exchange the most recent information,which can easily generate high communication cost through the collaborative data collection and data transmission.High frequency communication also has high probability of failure because of long distance data transmission.In this paper,we developed a novel approach to multi-sensor environment monitoring network using the idea of distributed system.Its communication network can overcome the difficulties of high communication cost and Single Point of Failure(SPOF)through the decentralized approach,which performs in-network computation.Our approach makes use of Boolean networks that allows for a non-complex method of corroboration and retains meaningful information regarding the dynamics of the communication network.Our approach also reduces the complexity of data aggregation process and employee a reinforcement learning algorithm to predict future event inside the environment through the pattern recognition.展开更多
A low-power environmental monitoring system based on WSN technology is proposed to effectively monitor the environmental status and ensure the healthy growth of greenhouse crops in the greenhouse. The system performs ...A low-power environmental monitoring system based on WSN technology is proposed to effectively monitor the environmental status and ensure the healthy growth of greenhouse crops in the greenhouse. The system performs dynamic mon- itoring on the environmental data of temperature, humidity, illumination, soil tempera- ture and humidity of the greenhouse, and it reduces the energy consumption by us- ing solar energy and lithium battery as the power supply mode and dynamic power management algorithm combined with improved routing protocol. Stable and reliable, the system could effectively monitor the key environmental factors in the green- house, making it of certain promotion value.展开更多
Intelligent Transportation Systems(ITS)have become a vital part in improving human lives and modern economy.It aims at enhancing road safety and environmental quality.There is a tremendous increase observed in the num...Intelligent Transportation Systems(ITS)have become a vital part in improving human lives and modern economy.It aims at enhancing road safety and environmental quality.There is a tremendous increase observed in the number of vehicles in recent years,owing to increasing population.Each vehicle has its own individual emission rate;however,the issue arises when the emission rate crosses a standard value.Owing to the technological advances made in Artificial Intelligence(AI)techniques,it is easy to leverage it to develop prediction approaches so as to monitor and control air pollution.The current research paper presents Oppositional Shark Shell Optimization with Hybrid Deep Learning Model for Air Pollution Monitoring(OSSOHDLAPM)in ITS environment.The proposed OSSO-HDLAPM technique includes a set of sensors embedded in vehicles to measure the level of pollutants.In addition,hybridized Convolution Neural Network with Long Short-Term Memory(HCNN-LSTM)model is used to predict pollutant level based on the data attained earlier by the sensors.In HCNN-LSTM model,the hyperparameters are selected and optimized using OSSO algorithm.In order to validate the performance of the proposed OSSO-HDLAPM technique,a series of experiments was conducted and the obtained results showcase the superior performance of OSSO-HDLAPM technique under different evaluation parameters.展开更多
In order to realize high precision of environment parameters detection in irrigation applications,a sensor and sensor network(SSN) ontology based data fusion method is proposed.An SSN sub-ontology for soilstate monito...In order to realize high precision of environment parameters detection in irrigation applications,a sensor and sensor network(SSN) ontology based data fusion method is proposed.An SSN sub-ontology for soilstate monitoring is revised,which includes the sensing devices hierarchies and measurement properties selection according to the detection feature interests.As for sensor data processing,a tuning data method by data pool filtering and clustering is adopted,as well as a useful data fusion method for multi-sensor system.The testing results show that both the accuracy and efficiency of the proposed method are higher after related filtering and clustering process,which enables a thorough monitoring for intelligent irrigation systems and can be extended into environment monitoring and control applications.展开更多
With the development of Internet technologies, Internet Based Information System (IBIS) arises with more advantages: Firstly, it is convenient for users to use owing to the introduction of Internet technologies. Secon...With the development of Internet technologies, Internet Based Information System (IBIS) arises with more advantages: Firstly, it is convenient for users to use owing to the introduction of Internet technologies. Secondly, it benefits greatly the data dissemination and data sharing based on Internet. The most important but not the last is that we can establish the information service network supported by its technologies and the facilities of information highway. So, it would be significant to design IBIS to realize the data collection, sharing and dissemination on Internet. There are many factors affecting regional environment. So it is not easy to realize the integrated environmental monitoring. Given this, we designed the Internet based environmental monitoring information system. By the virtue of the Internet based environmental monitoring information system, the management and storage of environmental monitoring data would be easier, which lays the foundation to actualize the environmental monitoring efficiently.展开更多
The Zhujiang (Pearl River) Estuary is a complex water system whose catchments basincovers a very large part of southern China. The large quantity of fresh water carried by the river system flows into the northern coas...The Zhujiang (Pearl River) Estuary is a complex water system whose catchments basincovers a very large part of southern China. The large quantity of fresh water carried by the river system flows into the northern coast of the South China Sea through its eight inlets. The Zhujiang River Delta has experienced the fastest economic growth in China during the past two decades. Rapid population expansion and increased industrial development coupled with insufficient waste management turned the Zhujiang Estuary into waste disposal channels just before entering the coastal waters. The water quality of the estuaries and the coastal oceans has become polluted. During the past two years, an intensive study and monitoring efforts of the pollutions of these waters have been made. A systematic and integrated monitoring task including shore-based measurements, shipboard in-situ measurements, and satellite and radar remote sensing surveys has been completed. Comprehensive collection of physical, chemical and biological parameters has been accomplished and a database has been established. Unlike the previous large scale-monitoring task in which the various pollutant concentrations were the objective, the present study aims to understand the process of the pollution from their initial disposal to their final states. The understanding of the processes makes it possible to evaluate the severity of the pollution with respect to the sustainability. Also the objective is to incorporate these processes into the mathematical models from which a predictive capability of the pollution situation can be realized. The present presentation will describe the planning, methodology and the results of this effort.展开更多
The development of Chinese system of aquatic environmental monitoring methods was summarized. The existing problem of the system of aquatic environmental monitoring methods was analyzed. At last, some suggestions were...The development of Chinese system of aquatic environmental monitoring methods was summarized. The existing problem of the system of aquatic environmental monitoring methods was analyzed. At last, some suggestions were made on setting and implementing the system of aquat- ic environmental monitoring methods in China.展开更多
This study is the first of a series of a project on the development and implementation of environmental protection policies, before<span style="font-family:Verdana;">,</span><span style="...This study is the first of a series of a project on the development and implementation of environmental protection policies, before<span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> during and after the construction of the </span><i><span style="font-family:Verdana;">Kribi</span></i> <i><span style="font-family:Verdana;">Industrial</span></i> <i><span style="font-family:Verdana;">and</span></i> <i><span style="font-family:Verdana;">Urban</span></i> <i><span style="font-family:Verdana;">Port</span></i> <i><span style="font-family:Verdana;">Complex</span></i><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">KIPC</span></i><span style="font-family:Verdana;">). The results will equip the State and scientific structures concerned with the protection of people, water resources and the environment as a whole. This includes reference data on the state of marine pollution in the region dating from the end of realization of the first phase of KIPC known as </span><i><span style="font-family:Verdana;">Kribi</span></i> <i><span style="font-family:Verdana;">Deep-Water</span></i> <i><span style="font-family:Verdana;">Harbor</span></i><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">KDWH</span></i><span style="font-family:Verdana;">). Accordingly, the aim of this work is to assess the current state of KIPC and its surrounding by quantifying the preliminary parameters of suspended matter (SM);to analyze the physical and chemical parameters, chemical pollution indicators for anions and major cations and organic pollution indicators of four water samples taken from four different sites in the project area by filtration and weighing, pH meter, turbid meter, titration, colorimetry and titrimetric methods. The analysis of these samples and these parameters provide</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> results which are slightly similar to international standards. This suggests that the environment remains relatively healthy. Hence, continuous management and monitoring of the parameters and pollution factors is strongly recommended.</span>展开更多
The formation of caves is the special environment of our earth. Caves with dim natural light and lighted hypogean environments, have been found various organism. The Kaklik Cave located tectonic lines and has a very d...The formation of caves is the special environment of our earth. Caves with dim natural light and lighted hypogean environments, have been found various organism. The Kaklik Cave located tectonic lines and has a very different way of formation when compare with many other same karstic formation caves. The Kaklik Cave is located in the area of Kaklik town in Honaz area and in Denizli province. The cave is one of the 54 cave opened to tourism in Turkey and endanger. In this study the cave climate, hydrol?ogy and biology were studied. The cave has specific species due to this formation, the entrance is wide and open to the sky, that makes the sunlight could go through a very wide area and cause of it is very rich about hydrology, these effects;provide a very high biodiversity to the cave. The cave has very important touristic potential because of the continuously growing travertine, geographical position, availability of access and natural beauties. The wrong artificial lightning badly changes the natural structure of the cave. This artificial lightning causes the biofilm layer and changing on the color of the travertine.展开更多
Transfer station(TS)is an integral part of present-day municipal solid waste(MSW)management systems.To provide information for the incorporation of waste facilities within the current integrated waste management syste...Transfer station(TS)is an integral part of present-day municipal solid waste(MSW)management systems.To provide information for the incorporation of waste facilities within the current integrated waste management system,the authors measured the existing environmental quality at five MSW TSs.Discharged wastewater,air,and noise were monitored and assayed at the five TSs in Beijing in 2001-2006 during rainy seasons(RSs)and dry seasons(DSs).Except Ammonia(NH_3)and hydrogen sulfide(H_2S),the analytical results of...展开更多
基金supported by the National Natural Science Foundation of China(No.61903023)the Natural Science Foundation of Bejing Municipality(No.4204110)+1 种基金State Key Laboratory of Rail Traffic Control and Safety(No.RCS2020ZT006,RCS2021ZT006)the Fundamental Research Funds for the Central Universities(No.2020JBM087).
文摘Response speed is vital for the railway environment monitoring system,especially for the sudden-onset disasters.The edge-cloud collaboration scheme is proved efficient to reduce the latency.However,the data characteristics and communication demand of the tasks in the railway environment monitoring system are all different and changeable,and the latency contribution of each task to the system is discrepant.Hence,two valid latency minimization strategies based on the edge-cloud collaboration scheme is developed in this paper.First,the processing resources are allocated to the tasks based on the priorities,and the tasks are processed parallly with the allocated resources to minimize the system valid latency.Furthermore,considering the differences in the data volume of the tasks,which will induce the waste of the resources for the tasks finished in advance.Thus,the tasks with similar priorities are graded into the same group,and the serial and parallel processing strategies are performed intra-group and inter-group simultaneously.Compared with the other four strategies in four railway monitoring scenarios,the proposed strategies proved latency efficiency to the high-priority tasks,and the system valid latency is reduced synchronously.The performance of the railway environment monitoring system in security and efficiency will be promoted greatly with the proposed scheme and strategies.
基金Supported by National Natural Science Foundation of China(40901261)Hainan Natural Science Foundation(808149)+1 种基金Scientific Research Projects of Hainan Higher Education Institute(Hjkj2009-41)National University Student Innovation Program(101165827)~~
文摘[Objective] The aim was to study on the feasibility to take Rana cancrivora, the only amphibian inhabiting mangrove, as indicator species for environment monitoring of mangrove. [Methods] Rana cancrivorae were collected in July and August of 2009 from two different microhabitats, including the pier and the core mangrove area of National Dongzhai Harbor Mangrove Reserve in Hainan Province. In addition, examination and analysis were conducted on activity of superoxide dismutase (SOD), catalase (CAT), acetylcholine esterase (AChE), and inducible nitric oxide synthase (iNOS), and content of malonaldehyde (MDA) in its liver and muscle. Furthermore, indices of hepar/body, kidney/body and spleen/body were measured to make a comprehensive evaluation on Rana cancrivora stress from environment and mangrove quality in different microhabitats. [Result] In mangrove habitat, indices of hepar/body, kidney/body and spleen/body of Rana cancrivora were all lower than that in pier and only index of kidney/body differed significantly (P0.05); the four enzyme activities were all higher than that in pier and activities of SOD and CAT differed significantly (P0.05). In addition, MDA content was lower than that in pier significantly (P0.05). The result indicated that antioxidant enzyme activity of Rana cancrivora in mangrove habitat was higher than that in pier individually, lipid peroxidation and the stress were lower correspondingly. [Conclusion] Because of human intervention and travelling development, quality of pier habitat was lower than that in mangrove core area, and stress for Rana cancrivora by environment was smaller than that in pier, correspondingly. Therefore, Rana cancrivora can be the indicator species for environment monitoring of mangrove.
文摘Environmental monitoring is essential for accessing and avoiding the undesirable situations in industries along with ensuring the safety of workers.Moreover,inspecting and monitoring of environmental parameters by humans lead to various health concerns,which in turn brings to the requirement of monitoring the environment by robotics.In this paper,we have designed and implemented a cost-efficient robotic vehicle for the computation of various environmental parameters such as temperature,radiation,smoke,and pressure with the help of sensors.Furthermore,the robotic vehicle is designed in such a way that it can be dually controlled by using the remote control along with the distant computer.In addition,contrary to the existing researches,the GSM modules are used to achieve the two-way long distance communication between the robotic vehicle and the distant computer.On the distant computer,the above-mentioned environmental parameters can be monitored along with controlling the robotic vehicle with the help of Graphical User Interface(GUI).In order to fulfill the given tasks,we have proposed two algorithms implemented at the robotic vehicle and the distant computer respectively in this paper.The final results validate the proposed algorithms where the above-mentioned environmental parameters can be monitored along with the smooth-running operation of the robotic vehicle.
文摘Monitoring techniques are a key technology for examining the conditions in various scenarios, e.g., structural conditions, weather conditions, and disasters. In order to understand such scenarios, the appropriate extraction of their features from observation data is important. This paper proposes a monitoring method that allows sound environments to be expressed as a sound pattern. To this end, the concept of synesthesia is exploited. That is, the keys, tones, and pitches of the monitored sound are expressed using the three elements of color, that is, the hue, saturation, and brightness, respectively. In this paper, it is assumed that the hue, saturation, and brightness can be detected from the chromagram, sonogram, and sound spectrogram, respectively, based on a previous synesthesia experiment. Then, the sound pattern can be drawn using color, yielding a “painted sound map.” The usefulness of the proposed monitoring technique is verified using environmental sound data observed at a galleria.
文摘How ecological environmental monitoring provides scientific and technological strength for ecological environmental management was studied.In recent years,the Ecological Environment Monitoring Station of Yanshan Branch,Wenshan Prefecture Ecological Environment Bureau,Yunnan Province has developed into a provincial environmental education base,a provincial science education base,and a national environmental protection facility open to the public by relying on monitoring equipment and facilities,personnel training,monitoring and law enforcement interaction,analysis of abnormal data,and countermeasures and suggestions were put forward for the problems in the development.
基金supported by the budget of GIC project at Okayama University.
文摘Global food security is a pressing issue that affects the stability and well-being of communities worldwide.While existing Internet of Things(IoT)enabled plant monitoring systems have made significant strides in agricultural monitoring,they often face limitations such as high power consumption,restricted mobility,complex deployment requirements,and inadequate security measures for data access.This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings.Our system strategically combines power efficiency,portability,and secure access capabilities,assisting farmers in monitoring and tracking crop environmental conditions.The proposed system includes a remote camera that captures images of surrounding plants and a sensor module that regularly monitors various environmental factors,including temperature,humidity,and soil moisture.We implement power management strategies to minimize energy consumption compared to existing solutions.Unlike conventional systems,our implementation utilizes the Amazon Web Services(AWS)cloud platform for reliable data storage and processing while incorporating comprehensive security measures,including Two-Factor Authentication(2FA)and JSON Web Tokens(JWT),features often overlooked in current agricultural IoT solutions.Users can access this secure monitoring system via a developed Android application,providing convenient mobile access to the gathered plant data.We validate our system’s advantages by implementing it with two potted garlic plants on Okayama University’s rooftop.Our evaluation demonstrates high sensor reliabil-ity,with strong correlations between sensor readings and reference data,achieving determination coefficients(R2)of 0.979 for temperature and 0.750 for humidity measurements.The implemented power management strategies extend battery life to 10 days on a single charge,significantly outperforming existing systems that typically require daily recharging.Furthermore,our dual-layer security implementation utilizing 2FA and JWT successfully protects sensitive agricultural data from unauthorized access.
基金Supported by Natural Science Foundation of Education Department in Henan Province (2009A520024)~~
文摘Agricultural environmental remote monitoring,data collection and network transmission are the development directions of modern agriculture.The embedded video remote monitoring system is designed with DSP processor DM642,which can collect the video signal of agricultural environment and biological information,as well as complete the extraction of video signal and network transmission.This system can be applied to the agro-ecological and environmental resources monitoring,agricultural disaster monitoring and warning and other digital agricultures.
文摘Volatile organic compounds(VOC)gas detection devices based on semiconductor sensors have become a common method due to their low cost,simple principle,and small size.However,with the continuous development of materials science,various new materials have been applied in the fabrication of gas sensors,but these new materials have more stringent requirements for operating temperature,which cannot be met by existing sensor modules on the market.Therefore,this paper proposes a temperature-adjustable sensor module and designs an environmental monitoring system based on the STM32F103RET6 microprocessor.This system primarily utilizes multiple semiconductor gas sensors to monitor and record the concentrations of various harmful gases in different environments.It can also monitor real-time temperature,humidity,and latitude and longitude in the current environment,and upload the data to the Internet of Things via 4G communication.This system has the advantages of small size,portability,and low cost.Experimental results show that the sensor module can achieve precise control of operating temperature to a certain extent,with an average temperature error of approximately 3%.The monitoring system demonstrates a certain level of accuracy in detecting target gases and can promptly upload the data to a cloud platform for storage and processing.A comparison with professional testing equipment shows that the sensitivity curves of each sensor exhibit similarity.This study provides engineering and technical references for the application of VOC gas sensors.
文摘The space environment monitor(SEM)aboard FY-2 satellite consists of the high energy particle detector(HEPD)and the solar X-ray flux detector(SXFD).The SEM can provide real-time monitoring of flare and solar proton event for its operation at geostationary orbit and is also the first Chinese space system for monitoring and alerting solar proton event.During the 23rd solar maximum cycle,almost all the solar proton events that took place in this period are monitored and some of them are predicted successfully by analyzing the characteristics of X-ray flare monitored by the SEM.Some basic variation characteristics of particle at geostationary orbit are found such as day-night periodic variation of particle flux,the electron flux with energy>1.4 MeV in the scope from 10 to 200/cm^(2).s-sr and the proton flux with energy>1.1 MeV in the scope from 600 to 8000/cm^(2)-s.sr during the time with no magnetic storm and solar eruption.
基金This research is supported by Natural Science Foundation of Hunan Province(No.2019JJ40145)Scientific Research Key Project of Hunan Education Department(No.19A273)open Fund of Key Laboratory of Hunan Province(2017TP1026).
文摘Distributed wireless sensor networks have been shown to be effective for environmental monitoring tasks,in which multiple sensors are deployed in a wide range of the environments to collect information or monitor a particular event,Wireless sensor networks,consisting of a large number of interacting sensors,have been successful in a variety of applications where they are able to share information using different transmission protocols through the communication network.However,the irregular and dynamic environment requires traditional wireless sensor networks to have frequent communications to exchange the most recent information,which can easily generate high communication cost through the collaborative data collection and data transmission.High frequency communication also has high probability of failure because of long distance data transmission.In this paper,we developed a novel approach to multi-sensor environment monitoring network using the idea of distributed system.Its communication network can overcome the difficulties of high communication cost and Single Point of Failure(SPOF)through the decentralized approach,which performs in-network computation.Our approach makes use of Boolean networks that allows for a non-complex method of corroboration and retains meaningful information regarding the dynamics of the communication network.Our approach also reduces the complexity of data aggregation process and employee a reinforcement learning algorithm to predict future event inside the environment through the pattern recognition.
基金Supported by the Fund for Independent Innovation of Agricultural Sciences in Jiangsu Province(CX(14)2108&CX(13)5066)~~
文摘A low-power environmental monitoring system based on WSN technology is proposed to effectively monitor the environmental status and ensure the healthy growth of greenhouse crops in the greenhouse. The system performs dynamic mon- itoring on the environmental data of temperature, humidity, illumination, soil tempera- ture and humidity of the greenhouse, and it reduces the energy consumption by us- ing solar energy and lithium battery as the power supply mode and dynamic power management algorithm combined with improved routing protocol. Stable and reliable, the system could effectively monitor the key environmental factors in the green- house, making it of certain promotion value.
文摘Intelligent Transportation Systems(ITS)have become a vital part in improving human lives and modern economy.It aims at enhancing road safety and environmental quality.There is a tremendous increase observed in the number of vehicles in recent years,owing to increasing population.Each vehicle has its own individual emission rate;however,the issue arises when the emission rate crosses a standard value.Owing to the technological advances made in Artificial Intelligence(AI)techniques,it is easy to leverage it to develop prediction approaches so as to monitor and control air pollution.The current research paper presents Oppositional Shark Shell Optimization with Hybrid Deep Learning Model for Air Pollution Monitoring(OSSOHDLAPM)in ITS environment.The proposed OSSO-HDLAPM technique includes a set of sensors embedded in vehicles to measure the level of pollutants.In addition,hybridized Convolution Neural Network with Long Short-Term Memory(HCNN-LSTM)model is used to predict pollutant level based on the data attained earlier by the sensors.In HCNN-LSTM model,the hyperparameters are selected and optimized using OSSO algorithm.In order to validate the performance of the proposed OSSO-HDLAPM technique,a series of experiments was conducted and the obtained results showcase the superior performance of OSSO-HDLAPM technique under different evaluation parameters.
基金the National Natural Science Foundation of China(No.61100133)the Science Guidance Project of Education Department of Hubei Province(No.B20101104)
文摘In order to realize high precision of environment parameters detection in irrigation applications,a sensor and sensor network(SSN) ontology based data fusion method is proposed.An SSN sub-ontology for soilstate monitoring is revised,which includes the sensing devices hierarchies and measurement properties selection according to the detection feature interests.As for sensor data processing,a tuning data method by data pool filtering and clustering is adopted,as well as a useful data fusion method for multi-sensor system.The testing results show that both the accuracy and efficiency of the proposed method are higher after related filtering and clustering process,which enables a thorough monitoring for intelligent irrigation systems and can be extended into environment monitoring and control applications.
基金Knowledge Innovation Project of CAS No. KZCX02-308
文摘With the development of Internet technologies, Internet Based Information System (IBIS) arises with more advantages: Firstly, it is convenient for users to use owing to the introduction of Internet technologies. Secondly, it benefits greatly the data dissemination and data sharing based on Internet. The most important but not the last is that we can establish the information service network supported by its technologies and the facilities of information highway. So, it would be significant to design IBIS to realize the data collection, sharing and dissemination on Internet. There are many factors affecting regional environment. So it is not easy to realize the integrated environmental monitoring. Given this, we designed the Internet based environmental monitoring information system. By the virtue of the Internet based environmental monitoring information system, the management and storage of environmental monitoring data would be easier, which lays the foundation to actualize the environmental monitoring efficiently.
基金This work was supported by the Hong Kong Jockey Club Charity Fund through Chief Executive' s Community Project, "PREPP" the Ministry of Science and Technology of China through 863/818 Project , "Zhujiang Estuary Integrated Ob-servation System".
文摘The Zhujiang (Pearl River) Estuary is a complex water system whose catchments basincovers a very large part of southern China. The large quantity of fresh water carried by the river system flows into the northern coast of the South China Sea through its eight inlets. The Zhujiang River Delta has experienced the fastest economic growth in China during the past two decades. Rapid population expansion and increased industrial development coupled with insufficient waste management turned the Zhujiang Estuary into waste disposal channels just before entering the coastal waters. The water quality of the estuaries and the coastal oceans has become polluted. During the past two years, an intensive study and monitoring efforts of the pollutions of these waters have been made. A systematic and integrated monitoring task including shore-based measurements, shipboard in-situ measurements, and satellite and radar remote sensing surveys has been completed. Comprehensive collection of physical, chemical and biological parameters has been accomplished and a database has been established. Unlike the previous large scale-monitoring task in which the various pollutant concentrations were the objective, the present study aims to understand the process of the pollution from their initial disposal to their final states. The understanding of the processes makes it possible to evaluate the severity of the pollution with respect to the sustainability. Also the objective is to incorporate these processes into the mathematical models from which a predictive capability of the pollution situation can be realized. The present presentation will describe the planning, methodology and the results of this effort.
基金Supported by Study on Water Environment Quality Monitoring Technological Method (2009ZX07527-001)Chongqing Natural Science Fund (CSTC,2009B137391)
文摘The development of Chinese system of aquatic environmental monitoring methods was summarized. The existing problem of the system of aquatic environmental monitoring methods was analyzed. At last, some suggestions were made on setting and implementing the system of aquat- ic environmental monitoring methods in China.
文摘This study is the first of a series of a project on the development and implementation of environmental protection policies, before<span style="font-family:Verdana;">,</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> during and after the construction of the </span><i><span style="font-family:Verdana;">Kribi</span></i> <i><span style="font-family:Verdana;">Industrial</span></i> <i><span style="font-family:Verdana;">and</span></i> <i><span style="font-family:Verdana;">Urban</span></i> <i><span style="font-family:Verdana;">Port</span></i> <i><span style="font-family:Verdana;">Complex</span></i><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">KIPC</span></i><span style="font-family:Verdana;">). The results will equip the State and scientific structures concerned with the protection of people, water resources and the environment as a whole. This includes reference data on the state of marine pollution in the region dating from the end of realization of the first phase of KIPC known as </span><i><span style="font-family:Verdana;">Kribi</span></i> <i><span style="font-family:Verdana;">Deep-Water</span></i> <i><span style="font-family:Verdana;">Harbor</span></i><span style="font-family:Verdana;"> (</span><i><span style="font-family:Verdana;">KDWH</span></i><span style="font-family:Verdana;">). Accordingly, the aim of this work is to assess the current state of KIPC and its surrounding by quantifying the preliminary parameters of suspended matter (SM);to analyze the physical and chemical parameters, chemical pollution indicators for anions and major cations and organic pollution indicators of four water samples taken from four different sites in the project area by filtration and weighing, pH meter, turbid meter, titration, colorimetry and titrimetric methods. The analysis of these samples and these parameters provide</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> results which are slightly similar to international standards. This suggests that the environment remains relatively healthy. Hence, continuous management and monitoring of the parameters and pollution factors is strongly recommended.</span>
文摘The formation of caves is the special environment of our earth. Caves with dim natural light and lighted hypogean environments, have been found various organism. The Kaklik Cave located tectonic lines and has a very different way of formation when compare with many other same karstic formation caves. The Kaklik Cave is located in the area of Kaklik town in Honaz area and in Denizli province. The cave is one of the 54 cave opened to tourism in Turkey and endanger. In this study the cave climate, hydrol?ogy and biology were studied. The cave has specific species due to this formation, the entrance is wide and open to the sky, that makes the sunlight could go through a very wide area and cause of it is very rich about hydrology, these effects;provide a very high biodiversity to the cave. The cave has very important touristic potential because of the continuously growing travertine, geographical position, availability of access and natural beauties. The wrong artificial lightning badly changes the natural structure of the cave. This artificial lightning causes the biofilm layer and changing on the color of the travertine.
文摘Transfer station(TS)is an integral part of present-day municipal solid waste(MSW)management systems.To provide information for the incorporation of waste facilities within the current integrated waste management system,the authors measured the existing environmental quality at five MSW TSs.Discharged wastewater,air,and noise were monitored and assayed at the five TSs in Beijing in 2001-2006 during rainy seasons(RSs)and dry seasons(DSs).Except Ammonia(NH_3)and hydrogen sulfide(H_2S),the analytical results of...