Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate ...Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.展开更多
A quantitative environmental assessment method and the corresponding computer code are introduced in this paper. By the consideration of all fuel cycle steps,it gives that the public health risk of China nuclear power...A quantitative environmental assessment method and the corresponding computer code are introduced in this paper. By the consideration of all fuel cycle steps,it gives that the public health risk of China nuclear power industry is 5.2 × 10-1 man /(GW.a), the occupational health risk is 2.5 man /(GW.a), and the total health risk is 3.0 man /(GW.a). After the health risk calculation for coal mining, transport, burning up and ash disposal, it gives that the public health risk of China coal-fired power industry is 3.6mall/(GW-a), the occupational health risk is 50man /(GW.a), and the total is 54man /(GW.d). Accordingly, the conclusion that China nuclear power industry is an industry with high safety and cleanness is derived at the end.展开更多
To make coal-fired power generation more environmentally friendly,China has initiated a series of ultra-low emission ret-rofits to the air pollution control(APC)system of the existing power plants.In this study,a life...To make coal-fired power generation more environmentally friendly,China has initiated a series of ultra-low emission ret-rofits to the air pollution control(APC)system of the existing power plants.In this study,a life cycle assessment(LCA)is conducted to analyze the environmental net benefits for the typical ultra-low emission retrofit of a 1000 MW power plant.The key processes,substances,and APC devices are verified and discussed.The results confirm that the retrofit effectively decreases the environmental stress of acidification potential(AP),eutrophication potential(EP),and photochemical ozone creation potential(POCP)by 69%-79%,which can be attributed to significantly reduced emissions at the stack.However,the retrofit has also increased other impact categories by 24%-79%,primarily due to the consumption of additional elec-tricity and adsorbents.The retrofit of selective catalytic reduction,electrostatic precipitator(ESP),and wet limestone flue gas desulfurization devices has a dominant effect on the impacts of EP,human toxicity potential(HTP),and AP.A newly installed wet ESP shows some environmental benefits(only for AP),but causes considerable burdens,in particular for the investigated impact categories global warming potential(GWP),marine aquatic ecotoxicity(MAETP),and abiotic depletion fossil(ADP fossil).The obtained results indicate that the hidden environmental consequences,which are associated with the production of energy and materials,need to be examined more comprehensively to inform the development of ultra-low emission technologies and strategies effectively.展开更多
文摘Coal is the backbone of the Indian power sector. The coal-fired power plants remain the largest emitters of carbon dioxide, sulfur dioxide and substantial amounts of nitrogen oxides, which are associated with climate and health impacts. Various CO2 mitigation technologies (carbon capture and storage--CCS) and SO2/NOx mitigation technologies (flue gas desulfurization and selective catalytic reduction) have been employed to reduce the environmental impacts of the coal-fired power plants. Therefore, it is imperative to understand the feasibility of various mitigation technologies employed. This paper attempts to perform environmental life cycle assessment (LCA) of Indian coal-fired power plant with and without CO2, SO2 and NOx mitigation controls. The study develops new normalization factors for India in various damage categories, using the Indian emissions and energy consumption data, coupled with the emissions and particulate emission to come up with a final environmental impact of coal-fired electricity. The results show a large degree of dependence on the perspective of assessment used. The impact of sensitivities of individual substances and the effect of plant efficiency on the final LCA results is also studied.
文摘A quantitative environmental assessment method and the corresponding computer code are introduced in this paper. By the consideration of all fuel cycle steps,it gives that the public health risk of China nuclear power industry is 5.2 × 10-1 man /(GW.a), the occupational health risk is 2.5 man /(GW.a), and the total health risk is 3.0 man /(GW.a). After the health risk calculation for coal mining, transport, burning up and ash disposal, it gives that the public health risk of China coal-fired power industry is 3.6mall/(GW-a), the occupational health risk is 50man /(GW.a), and the total is 54man /(GW.d). Accordingly, the conclusion that China nuclear power industry is an industry with high safety and cleanness is derived at the end.
基金This project is supported by the Chinese National Key R&D Program(No.2018YFB0605205)the Zhejiang Provincial Natural Science Foundation(Grant No.LQ21E060001).
文摘To make coal-fired power generation more environmentally friendly,China has initiated a series of ultra-low emission ret-rofits to the air pollution control(APC)system of the existing power plants.In this study,a life cycle assessment(LCA)is conducted to analyze the environmental net benefits for the typical ultra-low emission retrofit of a 1000 MW power plant.The key processes,substances,and APC devices are verified and discussed.The results confirm that the retrofit effectively decreases the environmental stress of acidification potential(AP),eutrophication potential(EP),and photochemical ozone creation potential(POCP)by 69%-79%,which can be attributed to significantly reduced emissions at the stack.However,the retrofit has also increased other impact categories by 24%-79%,primarily due to the consumption of additional elec-tricity and adsorbents.The retrofit of selective catalytic reduction,electrostatic precipitator(ESP),and wet limestone flue gas desulfurization devices has a dominant effect on the impacts of EP,human toxicity potential(HTP),and AP.A newly installed wet ESP shows some environmental benefits(only for AP),but causes considerable burdens,in particular for the investigated impact categories global warming potential(GWP),marine aquatic ecotoxicity(MAETP),and abiotic depletion fossil(ADP fossil).The obtained results indicate that the hidden environmental consequences,which are associated with the production of energy and materials,need to be examined more comprehensively to inform the development of ultra-low emission technologies and strategies effectively.