In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
Iraq is one of the countries that is suffering from water shortage problems and, for this reason, wastewater treatment plants become a necessity to minimize this problem. In this study, the impact of A1-Hilla WWTP (w...Iraq is one of the countries that is suffering from water shortage problems and, for this reason, wastewater treatment plants become a necessity to minimize this problem. In this study, the impact of A1-Hilla WWTP (wastewater treatment plant) on the environment has been studied. This was achieved using SimaPro software package. This software is a powerful tool for analyzing the environmental impact on products during their whole life cycle. A huge amount of knowledge about the environment is built into the program and database, enabling to analyze a product with a minimum of specialized knowledge. The results of LCA (life cycle assessment) showed that the impact and damage on the environment by A1-Hilla WWTP was 41 bad points for each 1 m3 of treated wastewater. The most environmental impacts potentially were global warming, respiratory inorganics and non-renewable energy. The study also showed that most of the effects were the result of the use of cement, steel and electricity consumption.展开更多
The wide occurrence of new-emerging pollutants and their potential environmental and ecological risks have recently caused great public concerns. The paper firstly put forward the severe problem. Then the possible mai...The wide occurrence of new-emerging pollutants and their potential environmental and ecological risks have recently caused great public concerns. The paper firstly put forward the severe problem. Then the possible main reasons were analyzed which might attribute to both the inefficient removal of wastewater treatment plants with conventional technology and ignorance of the monitor and control of new-emerging pollutants in the effluents. Also, the complexity and extreme high costs may also make the organizations sidestep the problem. Finally, possible strategies to deal with the problems were proposed. The upgrade of wastewater treatment plants was important and urgent.展开更多
Antimicrobial resistance(AMR)has emerged as a significant challenge in human health.Wastewater treatment plants(WWTPs),acting as a link between human activities and the environment,create ideal conditions for the sele...Antimicrobial resistance(AMR)has emerged as a significant challenge in human health.Wastewater treatment plants(WWTPs),acting as a link between human activities and the environment,create ideal conditions for the selection and spread of antibiotic resistance genes(ARGs)and antibioticresistant bacteria(ARB).Unfortunately,current treatment processes are ineffective in removing ARGs,resulting in the release of large quantities of ARB and ARGs into the aquatic environment through WWTP effluents.This,in turn,leads to their dispersion and potential transmission to human through water and the food chain.To safeguard human and environmental health,it is crucial to comprehend the mechanisms by which WWTP effluent discharge influences the distribution and diffusion of ARGs in downstream waterbodies.In this study,we examine the latest researches on the antibiotic resistome in various waterbodies that have been exposed to WWTP effluent,highlighting the key influencing mechanisms.Furthermore,recommendations for future research and management strategies to control the dissemination of ARGs from WWTPs to the environment are provided,with the aim to achieve the“One Health”objective.展开更多
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
文摘Iraq is one of the countries that is suffering from water shortage problems and, for this reason, wastewater treatment plants become a necessity to minimize this problem. In this study, the impact of A1-Hilla WWTP (wastewater treatment plant) on the environment has been studied. This was achieved using SimaPro software package. This software is a powerful tool for analyzing the environmental impact on products during their whole life cycle. A huge amount of knowledge about the environment is built into the program and database, enabling to analyze a product with a minimum of specialized knowledge. The results of LCA (life cycle assessment) showed that the impact and damage on the environment by A1-Hilla WWTP was 41 bad points for each 1 m3 of treated wastewater. The most environmental impacts potentially were global warming, respiratory inorganics and non-renewable energy. The study also showed that most of the effects were the result of the use of cement, steel and electricity consumption.
文摘The wide occurrence of new-emerging pollutants and their potential environmental and ecological risks have recently caused great public concerns. The paper firstly put forward the severe problem. Then the possible main reasons were analyzed which might attribute to both the inefficient removal of wastewater treatment plants with conventional technology and ignorance of the monitor and control of new-emerging pollutants in the effluents. Also, the complexity and extreme high costs may also make the organizations sidestep the problem. Finally, possible strategies to deal with the problems were proposed. The upgrade of wastewater treatment plants was important and urgent.
基金supported by the National Natural Science Foundation of China(Grant Nos.51938001,52170185 and 52070111)the China Postdoctoral Science Foundation(No.2022M721815)。
文摘Antimicrobial resistance(AMR)has emerged as a significant challenge in human health.Wastewater treatment plants(WWTPs),acting as a link between human activities and the environment,create ideal conditions for the selection and spread of antibiotic resistance genes(ARGs)and antibioticresistant bacteria(ARB).Unfortunately,current treatment processes are ineffective in removing ARGs,resulting in the release of large quantities of ARB and ARGs into the aquatic environment through WWTP effluents.This,in turn,leads to their dispersion and potential transmission to human through water and the food chain.To safeguard human and environmental health,it is crucial to comprehend the mechanisms by which WWTP effluent discharge influences the distribution and diffusion of ARGs in downstream waterbodies.In this study,we examine the latest researches on the antibiotic resistome in various waterbodies that have been exposed to WWTP effluent,highlighting the key influencing mechanisms.Furthermore,recommendations for future research and management strategies to control the dissemination of ARGs from WWTPs to the environment are provided,with the aim to achieve the“One Health”objective.