The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to re...The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to remove it from the body.Nevertheless,the fast degradation rate and generally inhomogeneous corrosion subsequently caused a decline in the mechanical strength of Mg during the healing period.Numerous researches have been conducted on the influences of various severe plastic deformation(SPD)processes on magnesium bioalloys and biocomposites.This paper strives to summarize the various SPD techniques used to achieve magnesium with an ultrafine-grained(UFG)structure.Moreover,the effects of various severe plastic deformation methods on magnesium microstructure,mechanical properties,and corrosion behavior have been discussed.Overall,this review intends to clarify the different potentials of applying SPD processes to the magnesium alloys and composites to augment their usage in biomedical applications.展开更多
This study examines the literature on bio-based and biodegradable plastics published between 2000 and 2021 and provides insights and research suggestions for the future.The study gathers data from the Scopus and ISI W...This study examines the literature on bio-based and biodegradable plastics published between 2000 and 2021 and provides insights and research suggestions for the future.The study gathers data from the Scopus and ISI Web of Science databases,then picks 1042 publications objectively and analyses their metadata.Furthermore,144 papers from the Web of Science are analysed to present insights and classifications of the literature based on content analyses,including assessment/evaluation of the sustainability of bio-based and biodegradable Plastics,sustainability of biodegradable Plastics,and factors driving the uptake of biodegradable plastics.The study finds that most research on bio-based and biodegradable plastic film evaluations considered only one dimension of sustainability,few considered two dimensions,and very few considered three dimensions.Though,in recent years,academic and industrial interest has grown dramatically in biodegradable plastics towards sustainability.The triple bottom line method in this report(economic benefit,social responsibility,and environmental protection)was employed to assess the biodegradable plastics towards sustainability.Top journals,Influential authors,top contributing institutions,top contributing nations,and contributions by fields are all identified in this study.This research gives a detailed but straightforward theoretical design of bio-based and biodegradable polymers.The study’s results and future research initiatives provide a new path for further investigation and contribution to the field.展开更多
To combat the problem of residual film pollution and ensure the sustainable development of agriculture in oasis areas,a field experiment was carried out in 2019 at the Wuyi Farm Corps Irrigation Center Test Station in...To combat the problem of residual film pollution and ensure the sustainable development of agriculture in oasis areas,a field experiment was carried out in 2019 at the Wuyi Farm Corps Irrigation Center Test Station in Urumqi,Northwest China.Four types of biodegradable mulches,traditional plastic mulchs and a control group(bare land;referred to as CK)were compared,including a total of six different treatments.Effects of mulching on soil water and heat conditions as well as the yield and quality of processing tomatoes under drip irrigation were examined.In addition,a comparative analysis of economic benefits of biodegradable mulches was performed.Principal component analysis and gray correlation analysis were used to evaluate suitable mulching varieties for planting processing tomatoes under drip irrigation.Our results show that,compared with CK,biodegradable mulches and traditional plastic mulch have a similar effect on retaining soil moisture at the seedling stage but significantly increase soil moisture by 0.5%-1.5%and 1.5%-3.0%in the middle and late growth periods(P<0.050),respectively.The difference in the thermal insulation effect between biodegradable mulch and plastic mulch gradually reduces as the crop grows.Compared with plastic mulch,the average soil temperature at 5-20 cm depth under biodegradable mulches is significantly lowered by 2.04°C-3.52°C and 0.52°C-0.88°C(P<0.050)at the seedling stage and the full growth period,respectively,and the water use efficiency,average fruit yield,and production-investment ratio under biodegradable mulches were reduced by 0.89%-6.63%,3.39%-8.69%,and 0.51%-6.33%(P<0.050),respectively.The comprehensive evaluation analysis suggests that the black oxidized biological double-degradation ecological mulch made from eco-benign plastic is the optimal film type under the study condition.Therefore,from the perspective of sustainable development,biodegradable mulch is a competitive alternative to plastic mulch for large-scale tomato production under drip irrigation in the oasis.展开更多
Application and promotion of biodegradable plastic film in modern agricultural production construction have become trend and direction of agricultural development.As important production material,biodegradable plastic...Application and promotion of biodegradable plastic film in modern agricultural production construction have become trend and direction of agricultural development.As important production material,biodegradable plastic film not only effectively changes agricultural production mode but also effectively decreases environmental pollution.Accompanied by degradation of new material,upgrading of optimizing process,and infiltration and blending of science and technology in new plastics industry,new biodegradable plastic films have been developed and popularized effectively and rapidly.In this paper,starting from development situation and prospect of degradable plastic film in China,natural-based biodegradable plastics,petroleum-based biodegradable plastics and biological-based biodegradable plastics are introduced in detail from basic material of plastics.The advantages and disadvantages of additive biodegradable film and fully biodegradable film are scientifically analyzed,and seasonal and periodic characteristics of biodegradable plastic film industry are elaborated.Moreover,disadvantages of biodegradable plastic film industry development are explored from technical barrier,brand and channel barriers,and talent barrier.Finally,development trend of biodegradable plastic film industry in China is predicted and analyzed scientifically.The research could provide guidance for the development of biodegradable plastic film industry in China ,research of biodegradable plastic film technology,and demonstration and extension of biodegradable plastic film application.展开更多
Natural plant fibers, including flax, kenaf, jute, bamboo, ramie and much more are renewable and sustainable resources and are considered good candidates for cost-effective alternatives to glass and carbon fibers. In ...Natural plant fibers, including flax, kenaf, jute, bamboo, ramie and much more are renewable and sustainable resources and are considered good candidates for cost-effective alternatives to glass and carbon fibers. In this research, cross ply biodegradable composites were fabricated by press-forming method. The biodegradable composites consist of Manila hemp textile as a reinforcement and starch-based biodegradable plastics as a matrix was fabricated and investigated about mechanical properties. The tensile strength increased with the fiber content until fiber content of about 50% and leveled off thereafter. This dependence on the fiber content is due to the decrease in fiber strength of loading direction caused by fiber damages introduced during hot-pressing. In order to decrease the damage of fibers aligned in loading direction, Manila hemp textile was produced by using Manila hemp fibers for warp and biodegradable resin thread for weft. As a result, the tensile strength of cross ply composites increased from 153 MPa to 202 MPa.展开更多
Using biodegradable material derived from renewable resources as petroleum-based plastics replacement is a promising way towards sustainable development.However,the insufficient mechanical properties and complex manuf...Using biodegradable material derived from renewable resources as petroleum-based plastics replacement is a promising way towards sustainable development.However,the insufficient mechanical properties and complex manufacturing process of bioplastics still need to be improved for high-quality food packages.Herein,we report a top-down strategy to transform natural wood into a clear wood packaging film through scalable delignification and polyvinyl alcohol(PVA)infiltration.The wood packaging film demonstrates a laminated structure with completely collapsed cell walls and PVA intertwined together after energy-saving air drying,resulting in high light transmittance with low haze,good mechanical performance,and high barrier performance for oxygen and water vapor.Molecular dynamics simulations reveal the underlying fracture mechanism between cellulose and PVA,which effectively enhances the Young’s modulus and strength of the wood packaging film.These findings contribute to the development of biodegradable and strong packaging materials,as well as other food-related applications,using sustainable wood.展开更多
A promising strategy to counteract the progressing plastic pollution of the environment can involve the replacement of persistent plastics with biodegradable materials.Biodegradable polymers are enzymatically degradab...A promising strategy to counteract the progressing plastic pollution of the environment can involve the replacement of persistent plastics with biodegradable materials.Biodegradable polymers are enzymatically degradable by various hydrolytic enzymes.However,these materials can reach the environment in the same way as conventional plastics.Therefore,they are accessible to terrestrial,freshwater,and marine biota.Once ingested by marine organisms,highly active enzymes in their digestive tracts may break down biodegradable compounds.We incubated microparticles of five different biodegradable plastics,based on polylactictic acid(PLA),polybutylene succinate(PBS),polybutylene adipate terephthalate(PBAT)and polyhydroxybutyrate-co-valerate(PHBV),in-vitro with the gastric fluid of the edible crab Cancer pagurus and evaluated the hydrolysis rates by pH Stat titration.A plastic blend of PLA with PBAT showed the highest hydrolysis rate.The enzymes in the gastric fluid of crabs were separated by anion exchange chromatography.Fractions with carboxylesterase activity were identified using fluorescent methylumbelliferyl(MUF)-derivatives.Pooled fractions with high carboxylesterase activity also hydrolyzed a PLA/PBAT plastic blend.Carboxylesterases showed molecular masses of 40–45 kDa as determined by native gel electrophoresis(SDS-PAGE).Our study demonstrated that digestive carboxylesterases in the gastric fluid of C.pagurus exhibit a high potential for hydrolyzing certain biodegradable plastics.Since esterases are common in the digestive tract of organisms,it seems likely that other invertebrates possess the ability to hydrolyze biodegradable plastics.展开更多
The possibility of microbial degradation of plastic waste was investigated by isolating microorganisms present in dumpsite containing low-density polyethylene (LDP). Aspergillus niger (fungi) and Pseudomonas sp. (bact...The possibility of microbial degradation of plastic waste was investigated by isolating microorganisms present in dumpsite containing low-density polyethylene (LDP). Aspergillus niger (fungi) and Pseudomonas sp. (bacteria) were identified and subsequently used to biodegrade plastic waste. The medium was made up of 0.2 g of MgSO4, 1.0 g of KH2PO4, 1.0 g of K2HPO4, 1.0 g of NH4NO3, 0.02 g of CaCl2, 0.05 g of FeCl3 in 1000 ml water. 10 ml of the medium containing the bacteria and/or fungi was poured into test tubes and 0.1 g of the plastic sample (Pure water sachet) pre-treated with ethanol was introduced into the tubes. The pH of the medium was adjusted to 7.2, 5.4 and 6.0 for Pseudomonas sp., Aspergillus niger and the mixed culture respectively. Each experiment was carried out aerobically at room temperature and incubated on a rotary shaker at 120 rpm. The weight loss in each experiment was monitored at 10 days interval for 60 days. The total weight loss after 60 days was 7.2%, 12.4%, 15% for degradation with Pseudomonas sp., Aspergillus niger and the mixed culture respectively. From this study it can be inferred that Pseudomonas sp. and Aspergillus niger have the ability to degrade plastics. It can also be inferred that Aspergillus niger degraded plastics better than Pseudomonas sp. and there was synergy between the two microorganisms since the mixed culture gave a higher degradation.展开更多
A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical ...A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical structure and function as PLA and it was used as a plasticizer to PLA.The copolymer was blended with PLA at a weight ratio from 2 to 10 wt%.Phase separation between PLA and PLA-PBS was not observed from their scanning electron microscopy(SEM)images and the crystal structure of PLA almost remained unchanged based on the X-ray diffraction(XRD)measurement.The melt flow index(MFI)of the blends was higher as the amount of PLA-PBS increased,indicating that the block copolymer did improve the mobility of the PLA chains.Moreover,tensile tests revealed that PLA with greater PLA-PBS copolymer exhibited higher elongation at break and it reached the maximum at 8 wt%of PLA-PBS in PLA,which was around 6 times higher than that of pure PLA.Furthermore,the glass transition temperature,measured by differential scanning calorimetry(DSC),markedly decreased with an increasing amount of the copolymer as it decreased from 61.2℃ for pure PLA to 41.3℃when it was blended with 10 wt%PLA-PBS copolymer.Therefore,the PLA-PBS copolymer was shown to be a promising plasticizer for fully biobased and toughened PLA.展开更多
Our efforts have been aimed at the technological basis of photosynthetic-microbial pro-duction of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate)(PHB), a raw material of biodeg...Our efforts have been aimed at the technological basis of photosynthetic-microbial pro-duction of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate)(PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable en-ergy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic ba-teria, in this report).A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20%of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mecha-nism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with thegenes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHBunder nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bac-terium grown on acetate were studied.Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hy-drogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase incyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new sys-tem for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterialferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trialfor genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridum pasteuri-anum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and charac-terized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose.Conversely in the case of cyanobacteria, genetic regulation of photosynthtic proteins was intended to im-prove comversion efficiency in hydogen production by the photosynthetic bacterium, Rhodobactersphaeroides RV. A mutant acquired by UV irradiation will be characterized for the mutation and for hydro-gen productivity in comparison with the wild type strain. Some basic studies to develop photobioreactorsare also introduced.展开更多
This paper presents substitute for non-biodegradable plastic packed material which comes as a part of municipal solid waste and becoming global problem due to its overuse. The plastic as packaging material has its adv...This paper presents substitute for non-biodegradable plastic packed material which comes as a part of municipal solid waste and becoming global problem due to its overuse. The plastic as packaging material has its advantages but also have more disadvantages because of its durability that it does not degraded. If the packaging material is made up of natural fibres it has more effect on local ecosystem. This paper provides the solution that use of natural fibres as pack-aging due to its light weight, high strength to weight ratio, corrosion resistance and other advantages are useful for the industry as well as commercially availability for the markets.展开更多
The continuous production of disposable plastic straw places a high demand on global petrochemical resources and a significant environmental burden.Biodegradable and eco-friendly straws have therefore been studied and...The continuous production of disposable plastic straw places a high demand on global petrochemical resources and a significant environmental burden.Biodegradable and eco-friendly straws have therefore been studied and produced worldwide.This article briefly introduces the characteristics of paper straws and polylactic acid(PLA)straws,and focuses on edible straws made using,e.g.,hydrophilic colloids,zein,and starch.Raw-material selection,preparation methods,advantages,and defects of straws are summarized,to provide a reference for the development and research of eco-friendly straws.展开更多
Plastic pollution has become an urgent issue,since its invasion to everyecosystem has led to multiple impacts on the environment and human pop-ulations.Certain microbial strains and genera had shown the ability to bio...Plastic pollution has become an urgent issue,since its invasion to everyecosystem has led to multiple impacts on the environment and human pop-ulations.Certain microbial strains and genera had shown the ability to bio-degrade plastic sources under laboratory conditions.In this minireview,wecallect and analyze scientific papers and reports of this microbial activity aswe contextualize this information on the global plastic pollution problem,toprovide an updated state of the art of plastiq/biodegradation with microbialagents.Along with a broad understanding of the general process of plasticbiadegraclation hosted by micrnarganisms.The contributions of this mini-revicw came from the identification of rescarch gaps,as well as proposalsfor new approaches.One of the main proposals focuses on coastal environ-nents and in particular coastal wetlands as a great microbiome source withpatential for plastic biodegradation,whether reported or undiscovered.Ourfinal proposal consists of the application of this knowledge into technologictools and strategies that have a remarkable impact on the battle against theplastic pollution problem.展开更多
文摘The use of magnesium in orthopedic and cardiovascular applications has been widely attracted by diminishing the risk of abnormal interaction of the implant with the body tissue and eliminating the second surgery to remove it from the body.Nevertheless,the fast degradation rate and generally inhomogeneous corrosion subsequently caused a decline in the mechanical strength of Mg during the healing period.Numerous researches have been conducted on the influences of various severe plastic deformation(SPD)processes on magnesium bioalloys and biocomposites.This paper strives to summarize the various SPD techniques used to achieve magnesium with an ultrafine-grained(UFG)structure.Moreover,the effects of various severe plastic deformation methods on magnesium microstructure,mechanical properties,and corrosion behavior have been discussed.Overall,this review intends to clarify the different potentials of applying SPD processes to the magnesium alloys and composites to augment their usage in biomedical applications.
基金the Ministry of Higher Education of Malaysia for providing financial support for this research through the Transdisciplinary Research Grant Scheme(TRGS)No.TRGS/1/2018/UMP/01/1(University Reference:RDU191801-5).
文摘This study examines the literature on bio-based and biodegradable plastics published between 2000 and 2021 and provides insights and research suggestions for the future.The study gathers data from the Scopus and ISI Web of Science databases,then picks 1042 publications objectively and analyses their metadata.Furthermore,144 papers from the Web of Science are analysed to present insights and classifications of the literature based on content analyses,including assessment/evaluation of the sustainability of bio-based and biodegradable Plastics,sustainability of biodegradable Plastics,and factors driving the uptake of biodegradable plastics.The study finds that most research on bio-based and biodegradable plastic film evaluations considered only one dimension of sustainability,few considered two dimensions,and very few considered three dimensions.Though,in recent years,academic and industrial interest has grown dramatically in biodegradable plastics towards sustainability.The triple bottom line method in this report(economic benefit,social responsibility,and environmental protection)was employed to assess the biodegradable plastics towards sustainability.Top journals,Influential authors,top contributing institutions,top contributing nations,and contributions by fields are all identified in this study.This research gives a detailed but straightforward theoretical design of bio-based and biodegradable polymers.The study’s results and future research initiatives provide a new path for further investigation and contribution to the field.
基金the Scientific and Technological Innovation Team Project in Key Areas(2019CB004)the Water-Saving Irrigation Experiment Project(BTJSSY–201911)of Xinjiang Production and Construction Corps,China。
文摘To combat the problem of residual film pollution and ensure the sustainable development of agriculture in oasis areas,a field experiment was carried out in 2019 at the Wuyi Farm Corps Irrigation Center Test Station in Urumqi,Northwest China.Four types of biodegradable mulches,traditional plastic mulchs and a control group(bare land;referred to as CK)were compared,including a total of six different treatments.Effects of mulching on soil water and heat conditions as well as the yield and quality of processing tomatoes under drip irrigation were examined.In addition,a comparative analysis of economic benefits of biodegradable mulches was performed.Principal component analysis and gray correlation analysis were used to evaluate suitable mulching varieties for planting processing tomatoes under drip irrigation.Our results show that,compared with CK,biodegradable mulches and traditional plastic mulch have a similar effect on retaining soil moisture at the seedling stage but significantly increase soil moisture by 0.5%-1.5%and 1.5%-3.0%in the middle and late growth periods(P<0.050),respectively.The difference in the thermal insulation effect between biodegradable mulch and plastic mulch gradually reduces as the crop grows.Compared with plastic mulch,the average soil temperature at 5-20 cm depth under biodegradable mulches is significantly lowered by 2.04°C-3.52°C and 0.52°C-0.88°C(P<0.050)at the seedling stage and the full growth period,respectively,and the water use efficiency,average fruit yield,and production-investment ratio under biodegradable mulches were reduced by 0.89%-6.63%,3.39%-8.69%,and 0.51%-6.33%(P<0.050),respectively.The comprehensive evaluation analysis suggests that the black oxidized biological double-degradation ecological mulch made from eco-benign plastic is the optimal film type under the study condition.Therefore,from the perspective of sustainable development,biodegradable mulch is a competitive alternative to plastic mulch for large-scale tomato production under drip irrigation in the oasis.
基金Supported by Project from Science and Technology Department of Tibet Autonomous Region[XZ2018ZR G-59(Z)]Project of "Young Scholars in Western China" of Chinese Academy of Sciences——"Assessment on Effects of Environmental-friendly Plastic Film Covering on Growth Indicators of Major Crops and Environment in Tibet at High-altitude Region"
文摘Application and promotion of biodegradable plastic film in modern agricultural production construction have become trend and direction of agricultural development.As important production material,biodegradable plastic film not only effectively changes agricultural production mode but also effectively decreases environmental pollution.Accompanied by degradation of new material,upgrading of optimizing process,and infiltration and blending of science and technology in new plastics industry,new biodegradable plastic films have been developed and popularized effectively and rapidly.In this paper,starting from development situation and prospect of degradable plastic film in China,natural-based biodegradable plastics,petroleum-based biodegradable plastics and biological-based biodegradable plastics are introduced in detail from basic material of plastics.The advantages and disadvantages of additive biodegradable film and fully biodegradable film are scientifically analyzed,and seasonal and periodic characteristics of biodegradable plastic film industry are elaborated.Moreover,disadvantages of biodegradable plastic film industry development are explored from technical barrier,brand and channel barriers,and talent barrier.Finally,development trend of biodegradable plastic film industry in China is predicted and analyzed scientifically.The research could provide guidance for the development of biodegradable plastic film industry in China ,research of biodegradable plastic film technology,and demonstration and extension of biodegradable plastic film application.
文摘Natural plant fibers, including flax, kenaf, jute, bamboo, ramie and much more are renewable and sustainable resources and are considered good candidates for cost-effective alternatives to glass and carbon fibers. In this research, cross ply biodegradable composites were fabricated by press-forming method. The biodegradable composites consist of Manila hemp textile as a reinforcement and starch-based biodegradable plastics as a matrix was fabricated and investigated about mechanical properties. The tensile strength increased with the fiber content until fiber content of about 50% and leveled off thereafter. This dependence on the fiber content is due to the decrease in fiber strength of loading direction caused by fiber damages introduced during hot-pressing. In order to decrease the damage of fibers aligned in loading direction, Manila hemp textile was produced by using Manila hemp fibers for warp and biodegradable resin thread for weft. As a result, the tensile strength of cross ply composites increased from 153 MPa to 202 MPa.
基金the support of the National Natural Science Foundation of China(No.32371790)the Fundamental Research Funds for the Central Universities(Nos.2572024AW61 and 2572023CT07)+4 种基金the National Key R&D Program of China(No.2023YFD2201404)China Postdoctoral Science Foundation(No.2020M681067)Special Funding Project of Postdoctoral in Heilongjiang Province(No.LBH-TZ2001)the National Natural Science Foundation of China(No.12302143)the National Key Research and Development Program of China(No.2023YFC3806300).
文摘Using biodegradable material derived from renewable resources as petroleum-based plastics replacement is a promising way towards sustainable development.However,the insufficient mechanical properties and complex manufacturing process of bioplastics still need to be improved for high-quality food packages.Herein,we report a top-down strategy to transform natural wood into a clear wood packaging film through scalable delignification and polyvinyl alcohol(PVA)infiltration.The wood packaging film demonstrates a laminated structure with completely collapsed cell walls and PVA intertwined together after energy-saving air drying,resulting in high light transmittance with low haze,good mechanical performance,and high barrier performance for oxygen and water vapor.Molecular dynamics simulations reveal the underlying fracture mechanism between cellulose and PVA,which effectively enhances the Young’s modulus and strength of the wood packaging film.These findings contribute to the development of biodegradable and strong packaging materials,as well as other food-related applications,using sustainable wood.
基金This work was supported by the European Union's Horizon 2020 research and innovation program(grant agreement number 860407).
文摘A promising strategy to counteract the progressing plastic pollution of the environment can involve the replacement of persistent plastics with biodegradable materials.Biodegradable polymers are enzymatically degradable by various hydrolytic enzymes.However,these materials can reach the environment in the same way as conventional plastics.Therefore,they are accessible to terrestrial,freshwater,and marine biota.Once ingested by marine organisms,highly active enzymes in their digestive tracts may break down biodegradable compounds.We incubated microparticles of five different biodegradable plastics,based on polylactictic acid(PLA),polybutylene succinate(PBS),polybutylene adipate terephthalate(PBAT)and polyhydroxybutyrate-co-valerate(PHBV),in-vitro with the gastric fluid of the edible crab Cancer pagurus and evaluated the hydrolysis rates by pH Stat titration.A plastic blend of PLA with PBAT showed the highest hydrolysis rate.The enzymes in the gastric fluid of crabs were separated by anion exchange chromatography.Fractions with carboxylesterase activity were identified using fluorescent methylumbelliferyl(MUF)-derivatives.Pooled fractions with high carboxylesterase activity also hydrolyzed a PLA/PBAT plastic blend.Carboxylesterases showed molecular masses of 40–45 kDa as determined by native gel electrophoresis(SDS-PAGE).Our study demonstrated that digestive carboxylesterases in the gastric fluid of C.pagurus exhibit a high potential for hydrolyzing certain biodegradable plastics.Since esterases are common in the digestive tract of organisms,it seems likely that other invertebrates possess the ability to hydrolyze biodegradable plastics.
文摘The possibility of microbial degradation of plastic waste was investigated by isolating microorganisms present in dumpsite containing low-density polyethylene (LDP). Aspergillus niger (fungi) and Pseudomonas sp. (bacteria) were identified and subsequently used to biodegrade plastic waste. The medium was made up of 0.2 g of MgSO4, 1.0 g of KH2PO4, 1.0 g of K2HPO4, 1.0 g of NH4NO3, 0.02 g of CaCl2, 0.05 g of FeCl3 in 1000 ml water. 10 ml of the medium containing the bacteria and/or fungi was poured into test tubes and 0.1 g of the plastic sample (Pure water sachet) pre-treated with ethanol was introduced into the tubes. The pH of the medium was adjusted to 7.2, 5.4 and 6.0 for Pseudomonas sp., Aspergillus niger and the mixed culture respectively. Each experiment was carried out aerobically at room temperature and incubated on a rotary shaker at 120 rpm. The weight loss in each experiment was monitored at 10 days interval for 60 days. The total weight loss after 60 days was 7.2%, 12.4%, 15% for degradation with Pseudomonas sp., Aspergillus niger and the mixed culture respectively. From this study it can be inferred that Pseudomonas sp. and Aspergillus niger have the ability to degrade plastics. It can also be inferred that Aspergillus niger degraded plastics better than Pseudomonas sp. and there was synergy between the two microorganisms since the mixed culture gave a higher degradation.
文摘A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical structure and function as PLA and it was used as a plasticizer to PLA.The copolymer was blended with PLA at a weight ratio from 2 to 10 wt%.Phase separation between PLA and PLA-PBS was not observed from their scanning electron microscopy(SEM)images and the crystal structure of PLA almost remained unchanged based on the X-ray diffraction(XRD)measurement.The melt flow index(MFI)of the blends was higher as the amount of PLA-PBS increased,indicating that the block copolymer did improve the mobility of the PLA chains.Moreover,tensile tests revealed that PLA with greater PLA-PBS copolymer exhibited higher elongation at break and it reached the maximum at 8 wt%of PLA-PBS in PLA,which was around 6 times higher than that of pure PLA.Furthermore,the glass transition temperature,measured by differential scanning calorimetry(DSC),markedly decreased with an increasing amount of the copolymer as it decreased from 61.2℃ for pure PLA to 41.3℃when it was blended with 10 wt%PLA-PBS copolymer.Therefore,the PLA-PBS copolymer was shown to be a promising plasticizer for fully biobased and toughened PLA.
文摘Our efforts have been aimed at the technological basis of photosynthetic-microbial pro-duction of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate)(PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable en-ergy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic ba-teria, in this report).A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20%of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mecha-nism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with thegenes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHBunder nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bac-terium grown on acetate were studied.Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hy-drogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase incyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new sys-tem for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterialferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trialfor genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridum pasteuri-anum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and charac-terized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose.Conversely in the case of cyanobacteria, genetic regulation of photosynthtic proteins was intended to im-prove comversion efficiency in hydogen production by the photosynthetic bacterium, Rhodobactersphaeroides RV. A mutant acquired by UV irradiation will be characterized for the mutation and for hydro-gen productivity in comparison with the wild type strain. Some basic studies to develop photobioreactorsare also introduced.
文摘This paper presents substitute for non-biodegradable plastic packed material which comes as a part of municipal solid waste and becoming global problem due to its overuse. The plastic as packaging material has its advantages but also have more disadvantages because of its durability that it does not degraded. If the packaging material is made up of natural fibres it has more effect on local ecosystem. This paper provides the solution that use of natural fibres as pack-aging due to its light weight, high strength to weight ratio, corrosion resistance and other advantages are useful for the industry as well as commercially availability for the markets.
文摘The continuous production of disposable plastic straw places a high demand on global petrochemical resources and a significant environmental burden.Biodegradable and eco-friendly straws have therefore been studied and produced worldwide.This article briefly introduces the characteristics of paper straws and polylactic acid(PLA)straws,and focuses on edible straws made using,e.g.,hydrophilic colloids,zein,and starch.Raw-material selection,preparation methods,advantages,and defects of straws are summarized,to provide a reference for the development and research of eco-friendly straws.
基金The research group acknowledges the PAPIIT project IT202418 for financial support,to the UMDI-Sisal and to the Faculty of Sciences of the National Autonomous University of Mexico for the facilities granted to carry out this work.
文摘Plastic pollution has become an urgent issue,since its invasion to everyecosystem has led to multiple impacts on the environment and human pop-ulations.Certain microbial strains and genera had shown the ability to bio-degrade plastic sources under laboratory conditions.In this minireview,wecallect and analyze scientific papers and reports of this microbial activity aswe contextualize this information on the global plastic pollution problem,toprovide an updated state of the art of plastiq/biodegradation with microbialagents.Along with a broad understanding of the general process of plasticbiadegraclation hosted by micrnarganisms.The contributions of this mini-revicw came from the identification of rescarch gaps,as well as proposalsfor new approaches.One of the main proposals focuses on coastal environ-nents and in particular coastal wetlands as a great microbiome source withpatential for plastic biodegradation,whether reported or undiscovered.Ourfinal proposal consists of the application of this knowledge into technologictools and strategies that have a remarkable impact on the battle against theplastic pollution problem.