The unique geomorphological features and farming methods in the Mollisol region of Northeast China increase water catchment flow and aggravate the erosion of ephemeral gully(EG).Vegetation suffers from rain erosion an...The unique geomorphological features and farming methods in the Mollisol region of Northeast China increase water catchment flow and aggravate the erosion of ephemeral gully(EG).Vegetation suffers from rain erosion and damage during the growth stage,which brings serious problems to the restoration of grass in the early stage.Therefore,effects of coir geotextile and geocell on EG erosion under four confluence intensities were researched in this study.Results of the simulated water discharge erosion test showed that when the confluence strength was less than 30 L/min,geocell and coir geotextile had a good effect on controlling EG erosion,and sediment yield of geocell and coir geotextile was reduced by 25.95%–37.82%and 73.73%–88.96%,respectively.However,when confluence intensity increased to 40 L/min,protective effect of coir geotextile decreased,and sediment yield rate increased sharply by 189.03%.When confluence intensity increased to 50 L/min,the protective effect of coir geotextile was lost.On the other hand,geocell showed that the greater the flow rate,the better the protective effect.In addition,with the increase in confluence intensity,erosion pattern of coir geotextile developed from sheet erosion to intermittent fall and then to completion of main rill,and the protective effect was gradually weakened.In contrast,the protective effect of EG under geocell was gradually enhanced from the continuous rill to the intermittent rill and finally to the intermittent fall.This study shows that coir geotextile and geocell can prevent EG erosion,and the effect of geocell is better than that of coir geotextile on the surface of EG.展开更多
Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quanti...Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully. According to three rainfall parameters including precipitation (P), rainfall duration (t), and maximum 30-minute rainfall intensity (I30), 115 rainfall events were classified by using K-mean clustering method and Discriminant Analysis. The results showed that 115 rainfall events could be divided into three rainfall regimes. Rainfall Regime 1 (RR1) had large I30 values with low precipitation and short duration, while the three rainfall parameters of Rainfall Regime 3 (RR3) were inversely different compared with those of RR1; for Rainfall Regime 2 (RR2), the precipitation, duration and Iso values were all between those of RR1 and RR3. Compared with RR2 and RR3, RR1 was the dominant rainfall regime for causing soil loss at the loessial hillslope with ephemeral gully, especially for causing extreme soil loss events. PI30 (Product of P and Izo) was selected as the key index of rainfall characteristics to fit soil loss equations. Two sets of linear regression equations between soil loss and Plzo with and without rainfall regime classification were fitted. Compared with the equation without rainfall regime classification, the cross validation results of the equations with rainfall regime classification was satisfactory. These results indicated that rainfall regime classification could not only depict rainfall characteristics precisely, but also improve soil loss equation prediction accuracy at loessial hillslope with ephemeral gully.展开更多
Ephemeral gullies are widely distributed in the hilly and gully region of the Loess Plateau and play a unique role in the slope gully erosion system.Rapid and accurate identification of ephemeral gullies impacts the d...Ephemeral gullies are widely distributed in the hilly and gully region of the Loess Plateau and play a unique role in the slope gully erosion system.Rapid and accurate identification of ephemeral gullies impacts the distribution law and development trend of soil erosion on the Loess Plateau.Deep learning algorithms can quickly and accurately process large data samples that recognize ephemeral gullies from remote sensing images.Here,we investigated ephemeral gullies in the Zhoutungou watershed in the hilly and gully region of the Loess Plateau in China using satellite and unmanned aerial vehicle images and combined a deep learning image semantic segmentation model to realize automatic recognition and feature extraction.Using Accuracy,Precision,Recall,F1value,and AUC,we compared the ephemeral gully recognition results and accuracy evaluation of U-Net,R2U-Net,and SegNet image semantic segmentation models.The SegNet model was ranked first,followed by the R2U-Net and U-Net models,for ephemeral gully recognition in the hilly and gully region of the Loess Plateau.The ephemeral gully length and width between predicted and measured values had RMSE values of 6.78 m and 0.50 m,respectively,indicating that the model has an excellent recognition effect.This study identified a fast and accurate method for ephemeral gully recognition in the hilly and gully region of the Loess Plateau based on remote sensing images to provide an academic reference and practical guidance for soil erosion monitoring and slope and gully management in the Loess Plateau region.展开更多
Evaluation of prediction models is crucial to achieving valid information on erosion processes and their management choices.WEPP model efficiency in predicting ephemeral gully(EG)erosion was recently tested and compar...Evaluation of prediction models is crucial to achieving valid information on erosion processes and their management choices.WEPP model efficiency in predicting ephemeral gully(EG)erosion was recently tested and compared with both EGEM and empirical models.The models abilities to predict EG erosion were validated using measured estimates at the 6 eroding locations around Mubi area in Northeast Nigeria between April 2008 and October 2009.Each location consisted of 3 watersheds where data on soils,climate,slope,management practices,EG shapes and dimensions were collected.Data on relevant soil properties were collected in the field and then analyzed in laboratory.The mass of soil loss(MSL)predicted by empirical,EGEM and WEPP models were compared with the measured using paired T-test,regression graphs(r^(2)-values),error analysis,and analysis of variance(ANOVA)in a completely ran-domized design.The EG erosion losses varied significantly(P≤0.05)between sites and years.No sig-nificant(P≤0.05)differences were observed between measured and the empirically predicted aggregate MSL.The measured aggregate MSL strongly correlated with those predicted by empirical(r^(2)=0.67),than with EGEM(r^(2)=0.57),and WEPP(r^(2)=0.53)models.Slight over and under-prediction instances against the measured erosion were noted with all the models.The WEPP model was found to slightly over-predict MSL when compared to either the empirical or EGEM model.The prediction quality of the models was generally impressive.Future works should focus more on local inputs such as climate,plants,management,and tillage data for use with WEPP.展开更多
Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conser...Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conservation measures in ephemeral gullies.In this study,an artificial simulated confluence test and stereoscopic photogrammetry were used to analyze the distribution characteristics of erosion and deposition in ephemeral gullies protected by geocells and the effect of different confluence flows on the erosion process of ephemeral gullies.Results showed that when the confluence flow was larger,the effect of geocell was more evident,and the protection against ephemeral gully erosion was stronger.When the confluence flow rates were 0.6,1.8,2.4,and 3.0 m^(3)/h,ephemeral gully erosion decreased by 37.84%,26.09%,21.40%,and 35.45%.When the confluence flow rates were 2.4 and 3.0 m^(3)/h,the average sediment yield rate of the ephemeral gully was close to 2.14 kg/(m^(2)•min),and the protective effect of ephemeral gully erosion was enhanced.When the flow rate was higher,the surface fracture of the ephemeral gully was more serious.With an increase in confluence flow rate,the ratio of erosion to deposition increased gradually,the erosion area of ephemeral gullies was expanded,and erosion depth changed minimally.In conclusion,geocell measures changed erosion patterns by altering the rill erosion/deposition ratio,converting erosion from rill erosion to sheet erosion.展开更多
A field study was carried out to assess soil loss from ephemeral gully(EG)erosion at 6 different locations(Digil,Vimtim,Muvur,Gella,Lamorde and Madanya)around the Mubi area between April,2008 and October,2009.Each loc...A field study was carried out to assess soil loss from ephemeral gully(EG)erosion at 6 different locations(Digil,Vimtim,Muvur,Gella,Lamorde and Madanya)around the Mubi area between April,2008 and October,2009.Each location consisted of 3 watershed sites from where data was collected.EG shape,land use,and conservation practices were noted,while EG length,width,and depth were measured.Physico-chemical properties of the soils were studied in the field and laboratory.Soil loss was both measured and predicted using modeled empirical equations.Results showed that the soils are heterogeneous and lying on flat to hilly topographies with few grasses,shrubs and tree vegetations.The soils comprised of sand fractions that predominated the texture,with considerable silt and clay contents.The empirical soil loss was generally related with the measured soil loss and the predictions were widely reliable at all sites,regardless of season.The measured and empirical aggregate soil loss were more related in terms of volume of soil loss(VSL)(r^(2)=0.93)and mass of soil loss(MSL)(r^(2)=0.92),than area of soil loss(ASL)(r^(2)=0.27).The empirical estimates of VSL and MSL were consistently higher at Muvur(less vegetation)and lower at Madanya and Gella(denser vegetations)in both years.The maximum efficiency(M_(se))of the empirical equation in predicting ASL was between 1.41(Digil)and 89.07(Lamorde),while the M_(se) was higher at Madanya(2.56)and lowest at Vimtim(15.66)in terms of VSL prediction efficiencies.The M_(se) also ranged from 1.84(Madanya)to 15.74(Vimtim)in respect of MSL predictions.These results led to the recommendation that soil conservationists,farmers,private and/or government agencies should implement the empirical model in erosion studies around Mubi area.展开更多
A field adaptation test of the Ephemeral Gully Erosion Model(EGEM)to predict ephemeral gully(EG)erosion was carried out in the 2008 and 2009 farming seasons in the Mubi area,NE Nigeria.Land use,conservation practices,...A field adaptation test of the Ephemeral Gully Erosion Model(EGEM)to predict ephemeral gully(EG)erosion was carried out in the 2008 and 2009 farming seasons in the Mubi area,NE Nigeria.Land use,conservation practices,and EG channel features were measured and/or noted at each site.Soil loss varied among the sites and seasons.The measured area,volume,and mass of soil loss were used to test the standard EGEM_(std),and the adapted models'(EGEM_(Ad) and EGEM_(Al))prediction efficiencies.The result showed that EGEM_(std) could not predict the area of soil loss adequately.Both EGEM_(Ad) and EGEM_(Al) were efficient and better adapted to predicting area,volume,and mass loss from EG erosion.The adapted models are therefore strongly recommended for implementation in the study area.展开更多
Gully erosion has caused soil degradation and even reduced soil productivity. However, only few studies on the effects of gully erosion and artificial controlling measures on soil degradation in the Black Soil Region ...Gully erosion has caused soil degradation and even reduced soil productivity. However, only few studies on the effects of gully erosion and artificial controlling measures on soil degradation in the Black Soil Region of Northeast China are available. Thus, this study explores the relationships between gully erosion, gully filling and soil parameters. Two sets of soil samples were collected in the field at: (1) 72 sample points in the gully erosion study area, 60 sample points in the ephemeral and classical gully erosion area (3,518 m2), 12 sample points in the deposition zone (443 m2), (2)1o reference points along a slope unaffected by gully erosion representing the original situation before the gully was formed. All soil samples were analyzed for gravel content (GC), soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), and available potassium (AK). The soil property values on unaffected slope were fitted by the polynomial curves as the reference values in no gully erosion area. The interpolated soil property values in gully eroded study area were compared with these polynomial curves, respectively, and then, changes of soil property values were analyzed. Gully erosion caused an increase in GC and a decrease in SOM, TN, AN, AP and AK. The change of GC, SOM, TN, AN, AP, AK was 8.8%, -9.04 g kg-1, -0.92 g kg-1, -62.28 mg kg-1, -29.61 mg kg% -79.68 mg kg-1. The soil property values in the study area were below optimal values. Thus, we concluded that gully erosion and gully filling caused both on-site and off-site soil degradation. Soil degradation area was 0.65 % of the cultivated land. In addition, it was proved that gully filling were an improper soil and water conservation measure, which seems to exacerbate the problem. Thus, it is suggested that soil where soil is deep is moved to fill the gully, and then the area around the filled gullies should be covered by grass for preventing the formation and development of the gully.展开更多
Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,e...Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,ephemeral gully mapping remains a challenge.In this study,we proposed a flow-directional detection for identifying ephemeral gullies from high-resolution images and digital elevation models(DEMs).Ephemeral gullies exhibit clear linear features in high-resolution images.An edge detection operator was initially used to identify linear features from high-resolution images.Then,according to gully erosion mechanism,the flow-directional detection was designed.Edge images obtained from edge detection and flow directions obtained from DEMs were used to implement the flow-directional detection that detects ephemeral gullies along the flow direction.Results from ten study areas in the Loess Plateau of China showed that ranges of precision,recall,and Fmeasure are 6 o.66%-90.47%,65.74%-94.98%,and63.10%-91.93%,respectively.The proposed method is flexible and can be used with various images and DEMs.However,analysis of the effect of DEM resolution and accuracy showed that DEM resolution only demonstrates a minor effect on the detection results.Conversely,DEM accuracy influences the detection result and is more important than the DEM resolution.The worse the vertical accuracy of DEM,the lower the performance of the flow-directional detection will be.This work is beneficial to research related to monitoring gully erosion and assessing soil loss.展开更多
Most authorities concede sediment from soil erosion to be the largest single stream pollutant. Physical damage from sediment includes reservoir storage loss, navigation channel filling, stream channel morphology alter...Most authorities concede sediment from soil erosion to be the largest single stream pollutant. Physical damage from sediment includes reservoir storage loss, navigation channel filling, stream channel morphology alterations, ecological impacts, and clogging of drainage pathways. Ultimately, soil erosion is a very expensive problem. In the United States, accelerated soil erosion has been an ongoing issue since the establishment of the colonies. Through the initiative of great minds and the labor of countless individuals, the USDA was established and continues to fight for the people, providing assistance, guidance, and research. In this manuscript, the historical groundwork is laid for the establishment of the USDA-ARS National Sedimentation Laboratory (NSL) and a synopsis of NSL research is provided. This brief perspective of soil erosion research conducted on behalf of the people is but a small portion of the illustrious history of the USDA.展开更多
基金supported by the National Natural Science Foundation of China(41907047)the China Scholarship Council(202106515016)the Strategic International Collaboration of Scientific and Technological Innovation for the National Key Research and Development Plan(2016YFE0202900).
文摘The unique geomorphological features and farming methods in the Mollisol region of Northeast China increase water catchment flow and aggravate the erosion of ephemeral gully(EG).Vegetation suffers from rain erosion and damage during the growth stage,which brings serious problems to the restoration of grass in the early stage.Therefore,effects of coir geotextile and geocell on EG erosion under four confluence intensities were researched in this study.Results of the simulated water discharge erosion test showed that when the confluence strength was less than 30 L/min,geocell and coir geotextile had a good effect on controlling EG erosion,and sediment yield of geocell and coir geotextile was reduced by 25.95%–37.82%and 73.73%–88.96%,respectively.However,when confluence intensity increased to 40 L/min,protective effect of coir geotextile decreased,and sediment yield rate increased sharply by 189.03%.When confluence intensity increased to 50 L/min,the protective effect of coir geotextile was lost.On the other hand,geocell showed that the greater the flow rate,the better the protective effect.In addition,with the increase in confluence intensity,erosion pattern of coir geotextile developed from sheet erosion to intermittent fall and then to completion of main rill,and the protective effect was gradually weakened.In contrast,the protective effect of EG under geocell was gradually enhanced from the continuous rill to the intermittent rill and finally to the intermittent fall.This study shows that coir geotextile and geocell can prevent EG erosion,and the effect of geocell is better than that of coir geotextile on the surface of EG.
基金supported by the National Natural Science Foundation of China(Grant No.41271299)by the Opening Fund of MWR Laboratory of Soil and Water Loss Process and Control in the Loess Plateau of China(Grant NO.2017001)
文摘Understanding the relationship between hillslope soil loss with ephemeral gully and rainfall regime is important for soil loss prediction and erosion control. Based on 12-year field observation data, this paper quantified the rainfall regime impacts on soil loss at loessial hillslope with ephemeral gully. According to three rainfall parameters including precipitation (P), rainfall duration (t), and maximum 30-minute rainfall intensity (I30), 115 rainfall events were classified by using K-mean clustering method and Discriminant Analysis. The results showed that 115 rainfall events could be divided into three rainfall regimes. Rainfall Regime 1 (RR1) had large I30 values with low precipitation and short duration, while the three rainfall parameters of Rainfall Regime 3 (RR3) were inversely different compared with those of RR1; for Rainfall Regime 2 (RR2), the precipitation, duration and Iso values were all between those of RR1 and RR3. Compared with RR2 and RR3, RR1 was the dominant rainfall regime for causing soil loss at the loessial hillslope with ephemeral gully, especially for causing extreme soil loss events. PI30 (Product of P and Izo) was selected as the key index of rainfall characteristics to fit soil loss equations. Two sets of linear regression equations between soil loss and Plzo with and without rainfall regime classification were fitted. Compared with the equation without rainfall regime classification, the cross validation results of the equations with rainfall regime classification was satisfactory. These results indicated that rainfall regime classification could not only depict rainfall characteristics precisely, but also improve soil loss equation prediction accuracy at loessial hillslope with ephemeral gully.
基金This research was supported by the National Natural Science Foundation of China(41977064)the Fundamental Research Funds for the Central Universities(2452021158+1 种基金2452021036)the 111 Project of the Ministry of Education and the State Administration of Foreign Experts Affairs(B12007)。
文摘Ephemeral gullies are widely distributed in the hilly and gully region of the Loess Plateau and play a unique role in the slope gully erosion system.Rapid and accurate identification of ephemeral gullies impacts the distribution law and development trend of soil erosion on the Loess Plateau.Deep learning algorithms can quickly and accurately process large data samples that recognize ephemeral gullies from remote sensing images.Here,we investigated ephemeral gullies in the Zhoutungou watershed in the hilly and gully region of the Loess Plateau in China using satellite and unmanned aerial vehicle images and combined a deep learning image semantic segmentation model to realize automatic recognition and feature extraction.Using Accuracy,Precision,Recall,F1value,and AUC,we compared the ephemeral gully recognition results and accuracy evaluation of U-Net,R2U-Net,and SegNet image semantic segmentation models.The SegNet model was ranked first,followed by the R2U-Net and U-Net models,for ephemeral gully recognition in the hilly and gully region of the Loess Plateau.The ephemeral gully length and width between predicted and measured values had RMSE values of 6.78 m and 0.50 m,respectively,indicating that the model has an excellent recognition effect.This study identified a fast and accurate method for ephemeral gully recognition in the hilly and gully region of the Loess Plateau based on remote sensing images to provide an academic reference and practical guidance for soil erosion monitoring and slope and gully management in the Loess Plateau region.
文摘Evaluation of prediction models is crucial to achieving valid information on erosion processes and their management choices.WEPP model efficiency in predicting ephemeral gully(EG)erosion was recently tested and compared with both EGEM and empirical models.The models abilities to predict EG erosion were validated using measured estimates at the 6 eroding locations around Mubi area in Northeast Nigeria between April 2008 and October 2009.Each location consisted of 3 watersheds where data on soils,climate,slope,management practices,EG shapes and dimensions were collected.Data on relevant soil properties were collected in the field and then analyzed in laboratory.The mass of soil loss(MSL)predicted by empirical,EGEM and WEPP models were compared with the measured using paired T-test,regression graphs(r^(2)-values),error analysis,and analysis of variance(ANOVA)in a completely ran-domized design.The EG erosion losses varied significantly(P≤0.05)between sites and years.No sig-nificant(P≤0.05)differences were observed between measured and the empirically predicted aggregate MSL.The measured aggregate MSL strongly correlated with those predicted by empirical(r^(2)=0.67),than with EGEM(r^(2)=0.57),and WEPP(r^(2)=0.53)models.Slight over and under-prediction instances against the measured erosion were noted with all the models.The WEPP model was found to slightly over-predict MSL when compared to either the empirical or EGEM model.The prediction quality of the models was generally impressive.Future works should focus more on local inputs such as climate,plants,management,and tillage data for use with WEPP.
基金supported by the National Natural Science Foundation,China(41907047)the National Key Research and Development Program of China(2016YFE0202900)the Natural Science Foundation of Tianjin,China(18JCZDJC39600).
文摘Investigating the effect of geocells on the erosion and deposition distribution of ephemeral gullies in the black soil area of Northeast China can provide a scientific basis for the allocation of soil and water conservation measures in ephemeral gullies.In this study,an artificial simulated confluence test and stereoscopic photogrammetry were used to analyze the distribution characteristics of erosion and deposition in ephemeral gullies protected by geocells and the effect of different confluence flows on the erosion process of ephemeral gullies.Results showed that when the confluence flow was larger,the effect of geocell was more evident,and the protection against ephemeral gully erosion was stronger.When the confluence flow rates were 0.6,1.8,2.4,and 3.0 m^(3)/h,ephemeral gully erosion decreased by 37.84%,26.09%,21.40%,and 35.45%.When the confluence flow rates were 2.4 and 3.0 m^(3)/h,the average sediment yield rate of the ephemeral gully was close to 2.14 kg/(m^(2)•min),and the protective effect of ephemeral gully erosion was enhanced.When the flow rate was higher,the surface fracture of the ephemeral gully was more serious.With an increase in confluence flow rate,the ratio of erosion to deposition increased gradually,the erosion area of ephemeral gullies was expanded,and erosion depth changed minimally.In conclusion,geocell measures changed erosion patterns by altering the rill erosion/deposition ratio,converting erosion from rill erosion to sheet erosion.
文摘A field study was carried out to assess soil loss from ephemeral gully(EG)erosion at 6 different locations(Digil,Vimtim,Muvur,Gella,Lamorde and Madanya)around the Mubi area between April,2008 and October,2009.Each location consisted of 3 watershed sites from where data was collected.EG shape,land use,and conservation practices were noted,while EG length,width,and depth were measured.Physico-chemical properties of the soils were studied in the field and laboratory.Soil loss was both measured and predicted using modeled empirical equations.Results showed that the soils are heterogeneous and lying on flat to hilly topographies with few grasses,shrubs and tree vegetations.The soils comprised of sand fractions that predominated the texture,with considerable silt and clay contents.The empirical soil loss was generally related with the measured soil loss and the predictions were widely reliable at all sites,regardless of season.The measured and empirical aggregate soil loss were more related in terms of volume of soil loss(VSL)(r^(2)=0.93)and mass of soil loss(MSL)(r^(2)=0.92),than area of soil loss(ASL)(r^(2)=0.27).The empirical estimates of VSL and MSL were consistently higher at Muvur(less vegetation)and lower at Madanya and Gella(denser vegetations)in both years.The maximum efficiency(M_(se))of the empirical equation in predicting ASL was between 1.41(Digil)and 89.07(Lamorde),while the M_(se) was higher at Madanya(2.56)and lowest at Vimtim(15.66)in terms of VSL prediction efficiencies.The M_(se) also ranged from 1.84(Madanya)to 15.74(Vimtim)in respect of MSL predictions.These results led to the recommendation that soil conservationists,farmers,private and/or government agencies should implement the empirical model in erosion studies around Mubi area.
文摘A field adaptation test of the Ephemeral Gully Erosion Model(EGEM)to predict ephemeral gully(EG)erosion was carried out in the 2008 and 2009 farming seasons in the Mubi area,NE Nigeria.Land use,conservation practices,and EG channel features were measured and/or noted at each site.Soil loss varied among the sites and seasons.The measured area,volume,and mass of soil loss were used to test the standard EGEM_(std),and the adapted models'(EGEM_(Ad) and EGEM_(Al))prediction efficiencies.The result showed that EGEM_(std) could not predict the area of soil loss adequately.Both EGEM_(Ad) and EGEM_(Al) were efficient and better adapted to predicting area,volume,and mass loss from EG erosion.The adapted models are therefore strongly recommended for implementation in the study area.
基金supported by National Basic Research Program of China (973 Program) (Grant no. 2007CB407204)Innovation project of Changjiang River Scientific Research Institute (CKSF2012052/TB)basic scientific research project of Changjiang River Scientific Research Institute (CKSF2011008)
文摘Gully erosion has caused soil degradation and even reduced soil productivity. However, only few studies on the effects of gully erosion and artificial controlling measures on soil degradation in the Black Soil Region of Northeast China are available. Thus, this study explores the relationships between gully erosion, gully filling and soil parameters. Two sets of soil samples were collected in the field at: (1) 72 sample points in the gully erosion study area, 60 sample points in the ephemeral and classical gully erosion area (3,518 m2), 12 sample points in the deposition zone (443 m2), (2)1o reference points along a slope unaffected by gully erosion representing the original situation before the gully was formed. All soil samples were analyzed for gravel content (GC), soil organic matter (SOM), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), and available potassium (AK). The soil property values on unaffected slope were fitted by the polynomial curves as the reference values in no gully erosion area. The interpolated soil property values in gully eroded study area were compared with these polynomial curves, respectively, and then, changes of soil property values were analyzed. Gully erosion caused an increase in GC and a decrease in SOM, TN, AN, AP and AK. The change of GC, SOM, TN, AN, AP, AK was 8.8%, -9.04 g kg-1, -0.92 g kg-1, -62.28 mg kg-1, -29.61 mg kg% -79.68 mg kg-1. The soil property values in the study area were below optimal values. Thus, we concluded that gully erosion and gully filling caused both on-site and off-site soil degradation. Soil degradation area was 0.65 % of the cultivated land. In addition, it was proved that gully filling were an improper soil and water conservation measure, which seems to exacerbate the problem. Thus, it is suggested that soil where soil is deep is moved to fill the gully, and then the area around the filled gullies should be covered by grass for preventing the formation and development of the gully.
基金funded by the National Natural Science Foundation of China (Grant No. 41930102, 41971333, 41771415, and 41701449)the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. 164320H116)the Open Fund of Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution (Grant No. KLSPWSEPA04)。
文摘Ephemeral gullies,which are widely developed worldwide and threaten farmlands,have aroused a growing concern.Identifying and mapping gullies are generally considered prerequisites of gully erosion assessment.However,ephemeral gully mapping remains a challenge.In this study,we proposed a flow-directional detection for identifying ephemeral gullies from high-resolution images and digital elevation models(DEMs).Ephemeral gullies exhibit clear linear features in high-resolution images.An edge detection operator was initially used to identify linear features from high-resolution images.Then,according to gully erosion mechanism,the flow-directional detection was designed.Edge images obtained from edge detection and flow directions obtained from DEMs were used to implement the flow-directional detection that detects ephemeral gullies along the flow direction.Results from ten study areas in the Loess Plateau of China showed that ranges of precision,recall,and Fmeasure are 6 o.66%-90.47%,65.74%-94.98%,and63.10%-91.93%,respectively.The proposed method is flexible and can be used with various images and DEMs.However,analysis of the effect of DEM resolution and accuracy showed that DEM resolution only demonstrates a minor effect on the detection results.Conversely,DEM accuracy influences the detection result and is more important than the DEM resolution.The worse the vertical accuracy of DEM,the lower the performance of the flow-directional detection will be.This work is beneficial to research related to monitoring gully erosion and assessing soil loss.
文摘Most authorities concede sediment from soil erosion to be the largest single stream pollutant. Physical damage from sediment includes reservoir storage loss, navigation channel filling, stream channel morphology alterations, ecological impacts, and clogging of drainage pathways. Ultimately, soil erosion is a very expensive problem. In the United States, accelerated soil erosion has been an ongoing issue since the establishment of the colonies. Through the initiative of great minds and the labor of countless individuals, the USDA was established and continues to fight for the people, providing assistance, guidance, and research. In this manuscript, the historical groundwork is laid for the establishment of the USDA-ARS National Sedimentation Laboratory (NSL) and a synopsis of NSL research is provided. This brief perspective of soil erosion research conducted on behalf of the people is but a small portion of the illustrious history of the USDA.