During epididymal transit, spermatozoa acquire new proteins. Some of these newly acquired proteins behave as integral membrane proteins, including glycosylphosphatidylinositol (GPI)-anchored proteins. This suggests ...During epididymal transit, spermatozoa acquire new proteins. Some of these newly acquired proteins behave as integral membrane proteins, including glycosylphosphatidylinositol (GPI)-anchored proteins. This suggests that the secreted epididymal proteins are transferred to spermatozoa by an unusual mechanism. Within the epididymal lumen, spermatozoa interact with small membranous vesicles named epididymosomes. Many proteins are associated with epididymosomes and the protein composition of these vesicles varies along the excurrent duct and differs from soluble intraluminal proteins. Some epididymosome-associated proteins have been identified and their functions in sperm maturation hypothesized. These include P25b, a zona pellucida binding protein, macrophage migration inhibitory factor, enzymes of the polyol pathway, HE5/CD52, type 5 glutathione peroxidase, and SPAM 1 or PH-20. The electrophoretic patterns of proteins associated to epididymosomes are complex and some of these proteins are transferred to defined surface domains of epididymal spermatozoa. Epididymosomes collected from different epididymal segments interact differently with spermatozoa. This protein transfer from epididymosomes to spermatozoa is timedependent, temperature-dependent and pH-dependent, and is more efficient in the presence of zinc. Some proteins are segregated to lipid raft domains of epididymosomes and are selectively transferred to raft domains of the sperm plasma membrane. Some evidence is presented showing that epididymosomes are secreted in an apocrine manner by the epididymal epithelial cells. In conclusion, epididymosomes are small membranous vesicles secreted in an apocrine manner in the intraluminal compartment of the epididymis and play a major role in the acquisition of new proteins by the maturing spermatozoa. (Asian J Androl 2007 July; 9: 483-491)展开更多
Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gam...Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gametogenesis. Less is known about the effects cholesterol homeostasis may have on postgonadic reproductive functions. Lately, several data have been reported showing how imbalanced cholesterol levels may particularly affect the post-testicular events of sperm maturation that lead to fully fertile male gametes. This review will focus on that aspect and essentially centers on how cholesterol is important for the physiology of the mammalian epididymis and spermatozoa.展开更多
文摘During epididymal transit, spermatozoa acquire new proteins. Some of these newly acquired proteins behave as integral membrane proteins, including glycosylphosphatidylinositol (GPI)-anchored proteins. This suggests that the secreted epididymal proteins are transferred to spermatozoa by an unusual mechanism. Within the epididymal lumen, spermatozoa interact with small membranous vesicles named epididymosomes. Many proteins are associated with epididymosomes and the protein composition of these vesicles varies along the excurrent duct and differs from soluble intraluminal proteins. Some epididymosome-associated proteins have been identified and their functions in sperm maturation hypothesized. These include P25b, a zona pellucida binding protein, macrophage migration inhibitory factor, enzymes of the polyol pathway, HE5/CD52, type 5 glutathione peroxidase, and SPAM 1 or PH-20. The electrophoretic patterns of proteins associated to epididymosomes are complex and some of these proteins are transferred to defined surface domains of epididymal spermatozoa. Epididymosomes collected from different epididymal segments interact differently with spermatozoa. This protein transfer from epididymosomes to spermatozoa is timedependent, temperature-dependent and pH-dependent, and is more efficient in the presence of zinc. Some proteins are segregated to lipid raft domains of epididymosomes and are selectively transferred to raft domains of the sperm plasma membrane. Some evidence is presented showing that epididymosomes are secreted in an apocrine manner by the epididymal epithelial cells. In conclusion, epididymosomes are small membranous vesicles secreted in an apocrine manner in the intraluminal compartment of the epididymis and play a major role in the acquisition of new proteins by the maturing spermatozoa. (Asian J Androl 2007 July; 9: 483-491)
文摘Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gametogenesis. Less is known about the effects cholesterol homeostasis may have on postgonadic reproductive functions. Lately, several data have been reported showing how imbalanced cholesterol levels may particularly affect the post-testicular events of sperm maturation that lead to fully fertile male gametes. This review will focus on that aspect and essentially centers on how cholesterol is important for the physiology of the mammalian epididymis and spermatozoa.