The aim of the present study is to investigate the brain functional network changes of patients with frontal lobe epilepsy(FLE)by resting-state functional magnetic resonance imaging(rsfMRI)and graph theoretical analys...The aim of the present study is to investigate the brain functional network changes of patients with frontal lobe epilepsy(FLE)by resting-state functional magnetic resonance imaging(rsfMRI)and graph theoretical analysis.rsfMRI is performed in 46 adult patients with FLE and 46 age matched healthy controls(HCs).A functional network is built from these subjects,and the topological properties of such network are analyzed quantitatively using graph theoretical methods.According to the results,both FLE patients and HCs exhibit prominent small world features.Compared with HCs,FLE shows a decrease in local efficiency(Eloc),clustering coefficient,nodal efficiency as well as nodal degree.Furthermore,FLE(seven)has fewer hubs than HCs(ten).The functional abnormalities in the network organization suggest functional disturbances in patients with FLE.This study helps to gain new insights into the functional disorder in patients with FLE.The networks built here can also be a set of potential biomarkers for the diagnosis,monitoring and the treatment of FLE.展开更多
Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and...Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.展开更多
Partial epilepsies, originating in a specific brain region, affect about 60% of adults with epilepsy. Temporal lobe epilepsy (TLE) is the most prevalent subtype within this category, often necessitating surgical inter...Partial epilepsies, originating in a specific brain region, affect about 60% of adults with epilepsy. Temporal lobe epilepsy (TLE) is the most prevalent subtype within this category, often necessitating surgical intervention due to its refractoriness to antiepileptic drugs (AEDs). Hippocampal sclerosis, a common underlying pathology, often exacerbates the severity by introducing cognitive and emotional challenges. This review delves deeper into the cognitive profile of TLE, along with the risk factors for cognitive disorders, depression, and anxiety in this population.展开更多
Temporal lobe epilepsy is the most common form of focal epilepsy in adults,accounting for one third of all diagnosed epileptic patients,with seizures originating from or involving mesial temporal structures such as th...Temporal lobe epilepsy is the most common form of focal epilepsy in adults,accounting for one third of all diagnosed epileptic patients,with seizures originating from or involving mesial temporal structures such as the hippocampus,and many of these patients being refractory to treatment with anti-epileptic drugs.Temporal lobe epilepsy is the most common childhood neurological disorder and,compared with adults,the symptoms are greatly affected by age and brain development.Diagnosis of temporal lobe epilepsy relies on clinical examination,patient history,electroencephalographic recordings,and brain imaging.Misdiagnosis or delay in diagnosis is common.A molecular biomarker that could distinguish epilepsy from healthy subjects and other neurological conditions would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated.Among possible biomarkers of pathological changes as well as potential therapeutic targets in the epileptic brain are micro RNAs.Most of the recent studies had performed micro RNA profiling in body fluids such as blood plasma and blood serum and brain tissues such as temporal cortex tissue and hippocampal tissue.A large number of micro RNAs were dysregulated when compared to healthy controls and with some overlap between individual studies that could serve as potential biomarkers.For example,in adults with temporal lobe epilepsy,possible biomarkers are miR-199a-3p in blood plasma and miR-142-5p in blood plasma and blood serum.In adults with mesial temporal lobe epilepsy,possible biomarkers are miR-153 in blood plasma and miR-145-3p in blood serum.However,in many of the studies involving patients who receive one or several anti-epileptic drugs,the influence of these on micro RNA expression in body fluids and brain tissues is largely unknown.Further studies are warranted with children with temporal lobe epilepsy and consideration should be given to utilizing mouse or rat and non-human primate models of temporal lobe epilepsy.The animal models could be used to confirm micro RNA findings in human patients and to test the effects of targeting specific micro RNAs on disease progression and behavior.展开更多
Objective To explore the ability of interictal diffusion-weighted imaging(DWI)to localize the temporal lobe of seizure origin and to predict postoperative seizure control in patients with temporal lobe epilepsy(TLE).M...Objective To explore the ability of interictal diffusion-weighted imaging(DWI)to localize the temporal lobe of seizure origin and to predict postoperative seizure control in patients with temporal lobe epilepsy(TLE).Methods Twenty-seven patients with intractable TLE considered for surgery and 19 healthy volunteers were studied with conventional magnetic resonance imaging(MRI)and DWI.Apparent diffusion coefficients(ADCs)of bilateral hippocampi in both TLE patients and control subjects were obtained.Lateralization to either temporal lobe with hippocampal ADC was based on the threshold values derived from ±1SD of right/left ratios in normal subjects.And the postoperative pathology was reviewed.Results Hippocampal ADCs were higher on the side of surgery compared with those on the contralateral side as well as the ipsilateral side in control subjects [resected side(109.8±7.3)×10-5 cm2/s,contralateral side(91.7±4.7)×10-5 cm2/s,control subjects(81.6±5.2)×10-5 cm2/s,all P<0.01].Right/left hippocampal ADC ratio and conventional MRI lateralized to the operated temporal lobe in 21 of 27(77.8%)and in 18 of 27(66.7%)patients.Lateralization to the surgical side was not associated with postoperative seizure control with right/left hippocampal ADC ratio(P>0.05).Conclusions Conventional MRI is a sensitive method to detect hippocampal sclerosis.Accuracy of the right/left hippocampal ADC ratio for lateralizing to the side of surgery is very high,but it isn't a better predictor of surgical outcome.展开更多
Temporal lobe epilepsy is associated with astrogliosis. Notchl signaling can induce astrogliosis in glioma. However, it remains unknown whether Notchl signaling is involved in the pathogenesis of epilepsy. This study ...Temporal lobe epilepsy is associated with astrogliosis. Notchl signaling can induce astrogliosis in glioma. However, it remains unknown whether Notchl signaling is involved in the pathogenesis of epilepsy. This study investigated the presence of Notchl, hairy and enhancer of split-l, and glial fibrillary acidic protein in the temporal neocortex and hippocampus of lithium-pilocar- pine-treated rats. The presence of Notchl and hairy and enhancer of split-1 was also explored in brain tissues of patients with intractable temporal lobe epilepsy. Quantitative electroencephalo- gram analysis and behavioral observations were used as auxiliary measures. Results revealed that the presence of Notchl, hairy and enhancer of split-l, and glial fibriUary acidic protein were en- hanced in status epilepticus and vehicle-treated spontaneous recurrent seizures rats, but remain unchanged in the following groups: control, absence of either status epilepticus or spontaneous recurrent seizures, and zileuton-treated spontaneous recurrent seizures. Compared with patient control cases, the presences of Notch1 and hairy and enhancer of split- 1 were upregulated in the temporal neocortex of patients with intractable temporal lobe epilepsy. Therefore, these results suggest that Notchl signaling may play an important role in the onset of temporal lobe epilepsy via astrogliosis. Furthermore, zileuton may be a potential therapeutic strategy for temporal lobe epilepsy by blocking Notchl signaling.展开更多
BACKGROUND Neurosurgical treatment of severe bilateral occipital lobe epilepsy usually involves two operations several mos apart.AIM To evaluate surgical resection of bilateral occipital lobe lesions during a single o...BACKGROUND Neurosurgical treatment of severe bilateral occipital lobe epilepsy usually involves two operations several mos apart.AIM To evaluate surgical resection of bilateral occipital lobe lesions during a single operation as a treatment for bilateral occipital lobe epilepsy.METHODS This retrospective case series included patients with drug-refractory bilateral occipital lobe epilepsy treated surgically between March 2006 and November 2015.RESULTS Preoperative evaluation included scalp video-electroencephalography(EEG),magnetic resonance imaging,and PET-CT.During surgery(bilateral occipital craniotomy),epileptic foci and important functional areas were identified by EEG(intracranial cortical electrodes)and cortical functional mapping,respectively.Patients were followed up for at least 5 years to evaluate treatment outcome(Engel grade)and visual function.The 20 patients(12 males)were aged 4-30 years(median age,12 years).Time since onset was 3-20 years(median,8 years),and episode frequency was 4-270/mo(median,15/mo).Common manifestations were elementary visual hallucinations(65.0%),flashing lights(30.0%),blurred vision(20.0%)and visual field defects(20.0%).Most patients were free of disabling seizures(Engel grade I)postoperatively(18/20,90.0%)and at 1 year(18/20,90.0%),3 years(17/20,85.0%)and≥5 years(17/20,85.0%).No patients were classified Engel grade IV(no worthwhile improvement).After surgery,there was no change in visual function in 13/20(65.0%),development of a new visual field defect in 3/20(15.0%),and worsening of a preexisting defect in 4/20(20.0%).CONCLUSION Resection of bilateral occipital lobe lesions during a single operation may be applicable in bilateral occipital lobe epilepsy.展开更多
Electroacupuncture was performed at the Wangu (GB 12) acupoint, whose position is similar to the cerebellar fastigial nucleus in rats with post-stroke depression. Results showed that the expression of nuclear factor...Electroacupuncture was performed at the Wangu (GB 12) acupoint, whose position is similar to the cerebellar fastigial nucleus in rats with post-stroke depression. Results showed that the expression of nuclear factor-κB and the levels of tumor necrosis factor-α and interleukin-1β decreased. Simultaneously, the extent of edema in the hippocampus and frontal lobe decreased, and the morphology of the nerve cells recovered to near normal. In addition, fluoxetine treatment displayed a similar effect on post-stroke depression as electroacupuncture at GB 12 acupoint. The results indicate that electroacupuncture at GB 12 acupoint can reduce the levels of cytokines in the hippocampus and frontal lobe of rats with post-stroke depression, and thus provide a neuroprotective effect on post-stroke depression.展开更多
BACKGROUND: Kainic acid can be used to induce a model of epilepsy by systemic injection, such as intraperitoneal or subcutaneous injection. Individual rats have different responses to kainic acid, therefore high dose...BACKGROUND: Kainic acid can be used to induce a model of epilepsy by systemic injection, such as intraperitoneal or subcutaneous injection. Individual rats have different responses to kainic acid, therefore high doses of drug are required and the success rate of model induction is low. It is necessary to develop an improved method to establish a temporal lobe epilepsy (TLE) animal model. OBJECTIVE: To explore an economic, stable and efficient method of establishing a TLE animal model. DESIGN, TIME AND SETTING: A completely randomized, controlled study. The experiments were performed in the Cellular Function Laboratory of the Physiology Department, Anhui Medical University from March to July 2007. MATERIALS: Twenty adult male Wistar rats, weighing 230-260 g, were provided by the Experimental Animal Centre of Nanjing Medical University. Kainic acid was purchased from Sigma in USA. Type SN-2 stereotaxic apparatus was made by Narishge in Japan. METHODS: Wistar rats were randomly divided into a kainic acid (KA) group (n = 12) and a normal saline (NS) group (n = 8). For intrahippocampal microinjection, a burr hole was drilled in the skull at the following stereotaxic coordinates: anteroposterior (AP) 4.1 mm caudal to bregma; lateral (ML) 4.2 mm right lateral to the midline. Rats in the KA group were injected with 2.5 μL KA (0.4 g/L) into the center of the CA3 region, while in the NS group the same volume of NS was injected into the same site. MAIN OUTCOME MEASURES: Both groups were monitored under a video capture system for 12 weeks to record spontaneous seizures. Intracranial eletroencepholograph (IEEG) recordings in vivo were performed after the behavioral observations. After the IEEG recordings, hippocampi were processed into coronal sections. Nissl and Timm stainings were then performed to observe and confirm pathology. RESULTS: Twenty rats were involved in the final analysis. Behavioral observations: the eadiest spontaneous onset of epilepsy appeared 2 weeks after injection of KA. Eight rats had spontaneous onset of epilepsy 3-12 weeks after treatment. None of rats in the NS group had spontaneous onset of epilepsy. IEEG recordings: Epileptic-form waves, such as sharp waves and spike waves, were calculated by artificial analysis The number of epileptic-form waves in the KA group increased significantly compared to those of the NS group (P 〈 0.01). Morphology results: In the KA group, Nissl staining and Timm staining revealed typical pathology in the hippocampal temporosphenoid lobe. In the NS group, no pathology was observed. CONCLUSION: Intrahippocampal microinjection of KA is a reliable method to establish a temporal lobe epilepsy animal model, requiring low doses of kainic acid and giving a high rate of success.展开更多
Objective:To detect the CHRNA7 gene mutation and polymorphism in Southern Han Chinese patients with nocturnal frontal lobe epilepsy(NFLE).Methods:Blood samples were collected from 215 Southern Han Chinese patients wit...Objective:To detect the CHRNA7 gene mutation and polymorphism in Southern Han Chinese patients with nocturnal frontal lobe epilepsy(NFLE).Methods:Blood samples were collected from 215 Southern Han Chinese patients with NFLE and 200 healthy Southern Han Chinese control subjects.Genomic DNA was extracted,and CHRNA7 whole genome exons were amplified by the polymerase chain reaction and subjected to Sanger sequencing.Results:No CHRNA7 gene mutation was detected in all of the NFLE patients.However,five single nucleotide polymorphisms(SNPs)in sporadic cases were found,located in exons 5,6.and 7 of the CHRNA7 gene.Among them,c.690G>A and c.698A>G are known SNPs,while c.370G>A,c.654C>T,and c.497-498delTG were newly discovered SNPs.These SNPs were also found in some of the healthy controls.Conclusions:No CHRNA7 gene mutation was identified in Southern Han Chinese patients with NFLE.The CHRNA7 gene is probably not responsible for NFLE in this population.展开更多
Objective To evaluate metabolic abnormalities in patients with mesial temporal lobe epilepsy (MTLE) with proton magnetic resonance spectroscopy (MRS) using a 3.0T MR scanner. Methods Sixty-three patients (32 wom...Objective To evaluate metabolic abnormalities in patients with mesial temporal lobe epilepsy (MTLE) with proton magnetic resonance spectroscopy (MRS) using a 3.0T MR scanner. Methods Sixty-three patients (32 women and 31 men) with diagnosed MTLE underwent diagnostic MR imaging (MRI) and proton MRS using a 3.0T MR scanner. The clinical history and interictal epileptiform discharges (IEDs) were recorded. Sixteen healthy volunteers served as control. The results of proton MRS were compared with the findings of electroencephalogram and structural MRI findings. Results Twenty-seven of the 63 patients with MTLE showed unilateral hippocampal sclerosis, and 9 showed bilateral hippocampal sclerosis. The concentration ratio of N-acytelaspartate (NAA) / [ creatine ( Cr ) + choline (Cho) ] in the hippocampal region of MTLE patients (0. 64±0. 07) was significantly lower than control (0. 80±0. 05, P = 0.023). In the patients with unilateral hippocampal sclerosis, NAA/(Cr + Cho) in the hippocampal region ipsilateral to the sclerotic hippocampus (0.56±0.06) was significantly lower than the ratio in the contralateral hippocampal region (0.69±0.07, P 〈 0. 001 ). There was significant difference in hippocampal NAA/( Cr + Cho) between the refractory patients and the non-refractory patients (0. 64±0. 05 vs.0.71±0. 07, P =0. 04). Forty-five patients were lateralized by IEDs, while 49 patients were lateralized by metabolite ratio. And lateralization determined by proton MRS and IEDs was concordant in 33 patients. Conclusions MRS as a noninvasive tool adds helpful metabolite information to routine MRI in evaluation of MTLE. The method is well established and should be a routine clinical application in the investigation of epilepsy.展开更多
Electroacupuncture (EA) has been clinically used to treat depression and has resulted in favorable effects in China. However, results from animal studies and pathology do not reflect the influence of electroacupunct...Electroacupuncture (EA) has been clinically used to treat depression and has resulted in favorable effects in China. However, results from animal studies and pathology do not reflect the influence of electroacupuncture treatment on in vivo physiological functions. To thoroughly and dynamically observe pathological changes during depression, the present study established EA + fluoxetine and fluoxetine groups to observe depression in patients. 1H-magnetic resonance spectroscopy was utilized to determine the correlation between hippocampal frontal lobe metabolite changes and mental disorder scale. Results revealed significantly increased N-acetylaspartate (NAA)/creatine (Cr) in the bilateral hippocampus and right frontal lobe of depression patients treated with EA compared with fluoxetine. Changes in NAA/Cr in bilateral hippocampus and right frontal lobe in both groups, before and after treatment, negatively correlated with severity and curative effects. Choline/Cr changes in the bilateral frontal lobes of both groups were significant before and after treatment, but negatively correlated with curative effects. Choline/Cr changes in the bilateral hippocampus were significant in the EA + fluoxetine group before and after treatment, but negatively correlated with severity and the curative effects of depression. These results demonstrate abnormal biochemical metabolism in bilateral frontal lobes and hippocampus of depression patients, and show that EA significantly altered biochemical indices in the frontal lobes and hippocampus compared with fluoxetine.展开更多
The Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophys...The Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophysiological mechanisms of mesial temporal lobe epilepsy. Imbalance in the relative expression of these two proteins can lead to a collapse of CI- homeostasis, resulting in a loss of gamma-aminobutyric acid-ergic inhibition and even epileptiform discharges. In this study, we investigated the expression of Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 in the sclerosed hippocampus of patients with mesial temporal lobe epilepsy, using western blot analysis and immunohistochemistry. Compared with the histologically normal hippocampus, the sclerosed hippocampus showed increased Na+-K+-Cl- cotransporter 1 expression and decreased K+-CI- cotransporter 2 expression, especially in CA2 and the dentate gyrus. The change was more prominent for the Na+-K+-CI- cotransporter 1 than for the K+-CI- cotransporter 2. These experimental findings indicate that the balance between intracellular and extracellular chloride may be disturbed in hippocampal sclerosis, contributing to the hyperexcitability underlying epileptic seizures. Changes in Na+-K+-CI-cotransporter 1 expression seems to be the main contributor. Our study may shed new light on possible therapies for patients with mesial temporal lobe epilepsy with hippocampal sclerosis.展开更多
The pathogenesis of temporal lobe epilepsy(TLE)was originally considered to be acquired.However,some reports showed that TLE was clustered in some families,indicating a genetic etiology.With the popularity of genetic ...The pathogenesis of temporal lobe epilepsy(TLE)was originally considered to be acquired.However,some reports showed that TLE was clustered in some families,indicating a genetic etiology.With the popularity of genetic testing technology,eleven different types of familial TLE(FTLE),including ETL1-ETL11,have been reported,of which ETL9-ETL11 had not yet been included in the OMIM database.These types of FTLE were caused by different genes/Loci and had distinct characteristics.ETL1,ETL7 and ETL10 were characterized by auditory,visual and aphasia seizures,leading to the diagnosis of familial lateral TLE.ETL2,ETL3 and ETL6 showed prominent autonomic symptom and automatism with or without hippocampal abnormalities,indicating a mesial temporal origin.Febrile seizures were common in FTLEs such as ETL2,ETL5,ETL6 and ETL11.ETL4 was diagnosed as occipitotemporal lobe epilepsy with a high incidence of migraine and visual aura.Considering the diversity and complexity of the symptoms of TLE,neurologists enquiring about the family history of epilepsy should ask whether the relatives of the proband had experienced unnoticeable seizures and whether there is a family history of other neurological diseases carefully.Most FTLE patients had a good prognosis with or without anti-seizure medication treatment,with the exception of patients with heterozygous mutations of the CPA6 gene.The pathogenic mechanism was diverse among these genes and spans disturbances of neuron development,differentiation and synaptic signaling.In this article,we describe the research progress on eleven different types of FTLE.The precise molecular typing of FTLE would facilitate the diagnosis and treatment of FTLE and genetic counseling for this disorder.展开更多
Cognitive impairment is the most common complication in patients with temporal lobe epilepsy with hippocampal scle rosis.There is no effective treatment for cognitive impairment.Medial septum cholinergic neurons have ...Cognitive impairment is the most common complication in patients with temporal lobe epilepsy with hippocampal scle rosis.There is no effective treatment for cognitive impairment.Medial septum cholinergic neurons have been reported to be a potential target for controlling epileptic seizures in tempo ral lobe epile psy.However,their role in the cognitive impairment of temporal lobe epilepsy remains unclear.In this study,we found that patients with temporal lobe epile psy with hippocampal sclerosis had a low memory quotient and severe impairment in verbal memory,but had no impairment in nonverbal memory.The cognitive impairment was slightly correlated with reduced medial septum volume and medial septum-hippocampus tra cts measured by diffusion tensor imaging.In a mouse model of chronic temporal lobe epilepsy induced by kainic acid,the number of medial septum choline rgic neurons was reduced and acetylcholine release was reduced in the hippocampus.Furthermore,selective apoptosis of medial septum cholinergic neurons mimicked the cognitive deficits in epileptic mice,and activation of medial septum cholinergic neurons enhanced hippocampal acetylcholine release and restored cognitive function in both kainic acid-and kindling-induced epile psy models.These res ults suggest that activation of medial septum cholinergic neurons reduces cognitive deficits in temporal lobe epilepsy by increasing acetylcholine release via projections to the hippocampus.展开更多
<b><span style="font-family:Verdana;">Background: </span></b><span style="font-family:Verdana;">Bilateral frontal lobes cerebral contusion and laceration is one unique...<b><span style="font-family:Verdana;">Background: </span></b><span style="font-family:Verdana;">Bilateral frontal lobes cerebral contusion and laceration is one unique brain injury in neurosurgery department. It is characteristic of recessive attacking and develops quickly. The unilateral cerebral falx incision is a new minimally invasive surgery </span><span style="font-family:Verdana;">that </span><span style="font-family:""><span style="font-family:Verdana;">can solve bilateral frontal lobes cerebral contusion and laceration in one surgery. However, it has some limitations in removal of contralateral frontal hematoma and hemostasis due to the limited field of view under the microscope. The unilateral bone window cerebral falx incision of bilateral frontal lobes cerebral contusion and laceration under a neuroendoscopy can acquire a good illumination and field of view. This is beneficial to complete removal of contralateral hematoma, effective hemostasis and retaining brain tissue functions to the maximum extent. </span><b><span style="font-family:Verdana;">Case Presentation:</span></b><span style="font-family:Verdana;"> The patient, a 55-year-old man, was hospitalized for “consciousness disorder by 12 h because of car accident”. </span><b><span style="font-family:Verdana;">Physical Examination: </span></b><span style="font-family:Verdana;">Coma, GCS score of E1V2M5, bilateral pupil diameter of 2 mm, presence of light response, contusion of scalp at the left top, peripheral dysphoria and bilateral Bartter syndrome negative. The patient has a history of non-traumatic cerebral stroke 3 years ago.</span><b><span style="font-family:Verdana;"> Head CT: </span></b><span style="font-family:Verdana;">Longitudinal fracture of frontal parietal occipital bone, bilateral frontal lobes contusion and laceration, subarachnoid hemorrhage. </span><b><span style="font-family:Verdana;">Diagnosis:</span></b><span style="font-family:Verdana;"> Bilateral frontal lobes contusion and laceration, longitudinal fracture of frontal parietal occipital bone, subarachnoid hemorrhage and hematoma of scalp. In emergency treatment, unilateral bone window cerebral falx incision of bilateral frontal lobes cerebral contusion and laceration under a neuroendoscopy was performed. The surgery has achieved satisfying effect. </span><b><span style="font-family:Verdana;">Discussion: </span></b><span style="font-family:Verdana;">This case realized the goal of removing contralateral frontal hematoma through unilateral craniotomy under a neuroendoscopy. Due to the clear field of view, it retained extracerebral layer structures of contralateral olfactory nerve protection frontotemporal completely. Moreover, this surgical technique is conducive to intraoperative recognition of pericallosal</span><span style="background:yellow;"> </span><span style="font-family:Verdana;">arteries and lateral fractured blood vessels. It also involves protection, which conforms to the minimally invasive philosophy. The proposed surgical technology can eliminate contralateral frontal hematoma under a good field of view. However, it is suggested not to manage with the further operation on patients who have brain swelling and difficulties in exposure of cerebral falx. These patients need to determine causes of brain swelling and choose bilateral craniectomy if necessary. </span><b><span style="font-family:Verdana;">Conclusions: </span></b><span style="font-family:Verdana;">Unilateral bone window cerebral falx incision of bilateral frontal lobes cerebral contusion and laceration under a neuroendoscopy is a new application of minimally invasive philosophy in craniocerebral injury operation. It still needs further clinical verifications and experience accumulation.展开更多
OBJECTIVE To understand the underlying mechanisms of drug resistant temporal lobe epilepsy(TLE).METHODS In vivo and vitro electrophysiology,optogenetics and chemogenetics were used in a classic multi-drug resistant TL...OBJECTIVE To understand the underlying mechanisms of drug resistant temporal lobe epilepsy(TLE).METHODS In vivo and vitro electrophysiology,optogenetics and chemogenetics were used in a classic multi-drug resistant TLE model.RESULTS Subicular pyramidal neuron activity was not inhibited by the anti-epileptic drug phenytoin in drug resistant rats.This phenomenon was specific to the subiculum,but did not involve surrounding temporal lobe regions.Selective inhibition of subicular pyramidal neurons by both optogenetics and chemogenetics reversed drug resistance.In contrast,selective activation of subicular pyramidal neurons directly induced drug resistance in drug responsive rats.Furthermore,long-term low frequency stimulation at the subiculum,which is clinically feasible,inhibited the activity of subicular pyramidal neurons and reversed drug resistance.CONCLUSION Subicular pyramidal neurons might be a key ″ switch″ mediating drug resistance in TLE and represent a new potential target for more precise treatment of drug resistant TLE.展开更多
BACKGROUND: Inducible nitric oxide synthase (iNOS) cannot be detected in the neurons and glial cells of normal rats, but iNOS can be found in some neurons and glial cells of rats following ischemic, traumatic, neur...BACKGROUND: Inducible nitric oxide synthase (iNOS) cannot be detected in the neurons and glial cells of normal rats, but iNOS can be found in some neurons and glial cells of rats following ischemic, traumatic, neurotoxic or inflammatory damage. OBJECTIVE: To investigate iNOS expression and iNOS-positive cell types at various time points following damage to the rat frontal lobe using a sharp instrument. DESIGN: A nerve molecular biology, randomized, controlled study. TIME AND SETTING: This experiment was performed at the Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, between April 2006 and December 2007. MATERIALS: Rabbit anti-iNOS antibody (Santa Cruz, USA), biotin labeled goat anti-rabbit antibody (Sigma, USA), reverse transcription kit (Biouniquer, Hong Kong, China) and horseradish peroxidase labeled goat anti-rabbit antibody (Pierce, USA) were used for this study. METHODS: A total of 112 healthy rats aged 3 months were randomly assigned into a sham operation group (n = 28) and a damage group (n = 84). Rat models of frontal lobe damage were induced in the damage group using a sharp instrument to make an incision in the frontal lobe cortex. In the sham operation group, the rat bone window was opened but brain tissues were left intact. MAIN OUTCOME MEASURES: Parameters were measured at 3, 6, 12, 24, 72, 120 and 168 hours following damage in both groups. Pathological changes were observed using Nissl staining and hematoxylin-eosin staining. Expression of iNOS mRNA, iNOS protein and iNOS-positive cells were examined by RT-PCR, Western blot analysis and immunohistochemistry, respectively. RESULTS: A large number of inflammatory cells infiltrated the damaged region 12 and 24 hours following damage, iNOS mRNA and iNOS protein expression increased in and around the damaged region 3 hours following damage, reached a peak at 24 hours, and then gradually decreased. The changes in iNOS-positive cell number reflected the changes in iNOS mRNA and iNOS protein expression after damage, iNOS was mainly found in neural cells at 3 and 6 hours, in macrophages at 12 and 24 hours, and in glial cells at 72 and 120 hours after damage. iNOS-positive cells were few in and surrounding the damaged region at 168 hours. There were a few iNOS-positive neural cells in the rat frontal lobe cortex in the sham operation group. CONCLUSION: Neurons, macrophages and glial cells can express iNOS following rat frontal lobe damage caused by a sharp instrument. The levels of iNOS expression, and the cell types expressing iNOS, change with time.展开更多
Serotonin (5-hydroxytryptamine, 5-HT) influences the cortical and subcortical excitatory/inhibitory balance and participates in the pathophysiological processes of epilepsy. The serotonin transporter (5-HTT) is th...Serotonin (5-hydroxytryptamine, 5-HT) influences the cortical and subcortical excitatory/inhibitory balance and participates in the pathophysiological processes of epilepsy. The serotonin transporter (5-HTT) is the most important factor in serotonin inactivation. We tested whether 5-HTT polymorphisms are involved in the pathogenesis of epilepsy in Chinese Han population. We did not find a significant difference in the frequencies of genotypes and alleles in the 5-HTT gene-linked poLymorphic region (5-H-I-FLPR) in patients with non-lesional temporal lobe epilepsy and normal controls (P〉 0.05). Frequencies of the 5-H1-1- intron 2 variable number tandem repeat (5-HTTVNTR) 12/12 genotype and allele 12 were higher in the patients with non-lesional temporal lobe epilepsy than normal controls (P 〈 0.01). The odds ratio of affecting non-lesional temporal lobe epilepsy was 1.435 (95% Cl, 1.096 1.880) in patients carrying allele 12 (P 〈 0.05). Although the 5-HTTLPR may not be a genetic locus of non-lesional temporal lobe epilepsy in Chinese Hart population, allele 12 in the 5-HTTVNTR may correlate with non-lesional temporal lobe epilepsy. The Stin2.12 allele and 12/12 genotype could be predisposing to non-lesional temporal lobe epilepsy.展开更多
Objective To explore the effect and mechanism of Chaihu Longgu Muli Decoction(柴胡龙骨牡蛎汤,CHLGMLD)in rats with temporal lobe epilepsy(TLE).Methods A total of 80 Sprague-Dawley(SD)male rats were randomized into cont...Objective To explore the effect and mechanism of Chaihu Longgu Muli Decoction(柴胡龙骨牡蛎汤,CHLGMLD)in rats with temporal lobe epilepsy(TLE).Methods A total of 80 Sprague-Dawley(SD)male rats were randomized into control(CON),model(MOD),carbamazepine(CBZ,0.1 g/kg),CHLGMLD low dose(CHLGMLD-L,12.5 g/kg),and high dose(CHLGMLD-H,25 g/kg)groups,with 16 rats in each group.TLE rat models were established in the four groups with the use of lithium-pilocarpine except for the CON group.After the successful establishment of TLE models,all drugs were administered through gavage,and distilled water was given to rats in the CON and MOD groups for four weeks.The frequency and duration of seizures before and after treatment were recorded for the evaluation of the alleviation degree.Quantitative real-time polymerase chain reaction(qRT-PCR)was used to detect the expression levels of miR-146a-3p and miR-146a-5p.The expression levels of toll-like receptor 4(TLR4),interleukin-1 receptor-associated kinase 1(IRAK1),tumor necrosis factor(TNF)receptor-associated factor 6(TRAF6),TAK1-binding protein(TAB),nuclear factor-kappa B(NF-κB),and interleukin-1 beta(IL-1β)in hippocampus were tested by immunofluorescence assay.Correlation analysis between the above factors and expressions of miR-146a-3p and miR-146a-5p were performed separately.Results CHLGMLD decreased the frequency(P<0.05)and duration(P<0.01)of seizures in rats.CHLGMLD down-regulated the expression levels of miR-146a-5p and miR-146a-3p(P<0.05),and inhibited the expression levels of TLR4,IRAK1,TRAF6,TAB,NF-κB,and IL-1β(P<0.01).The correlation analysis revealed that the expression levels of TLR4,IRAK1,TRAF6,TAB,NF-κB,and IL-1β were positively correlated with the expression levels of miR-146a-3p and miR-146a-5p detected by qRT-PCR,respectively(P<0.01).Conclusion CHLGMLD can inhibite the TLR4 signaling pathway by lowering the expression levels of miR-146a-3p and miR-146a-5p to alleviate hippocampal dentate gyrus inflammation in TLE rats,thus relieving seizures.展开更多
基金supported by the Natural Science Foundation of China (Nos. 81422022, 81271553, 81201155, 81171328, 61131003, 81401402, and 81201161)the Grant for a Young Scholar of Jinling Hospital (No. 2015055)12.5 Key Grants (Nos. BWS11J063 and 10z026)
文摘The aim of the present study is to investigate the brain functional network changes of patients with frontal lobe epilepsy(FLE)by resting-state functional magnetic resonance imaging(rsfMRI)and graph theoretical analysis.rsfMRI is performed in 46 adult patients with FLE and 46 age matched healthy controls(HCs).A functional network is built from these subjects,and the topological properties of such network are analyzed quantitatively using graph theoretical methods.According to the results,both FLE patients and HCs exhibit prominent small world features.Compared with HCs,FLE shows a decrease in local efficiency(Eloc),clustering coefficient,nodal efficiency as well as nodal degree.Furthermore,FLE(seven)has fewer hubs than HCs(ten).The functional abnormalities in the network organization suggest functional disturbances in patients with FLE.This study helps to gain new insights into the functional disorder in patients with FLE.The networks built here can also be a set of potential biomarkers for the diagnosis,monitoring and the treatment of FLE.
基金supported by the National Natural Science Foundation of China,Nos.62027812(to HS),81771470(to HS),and 82101608(to YL)Tianjin Postgraduate Research and Innovation Project,No.2020YJSS122(to XD)。
文摘Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory,resistant to antiepileptic drugs,and has a high recurrence rate.The pathogenesis of temporal lobe epilepsy is complex and is not fully understood.Intracellular calcium dynamics have been implicated in temporal lobe epilepsy.However,the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown,and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice.In this study,we used a multichannel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process.We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes.In particular,cortical spreading depression,which has recently been frequently used to represent the continuously and substantially increased calcium signals,was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from gradeⅡto gradeⅤ.However,vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures.Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to gradeⅠepisodes.In addition,the latency of cortical spreading depression was prolonged,and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced.Intriguingly,it was possible to rescue the altered intracellular calcium dynamics.Via simultaneous analysis of calcium signals and epileptic behaviors,we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced,and that the end-point behaviors of temporal lobe epilepsy were improved.Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades.Furthermore,the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy,thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.
文摘Partial epilepsies, originating in a specific brain region, affect about 60% of adults with epilepsy. Temporal lobe epilepsy (TLE) is the most prevalent subtype within this category, often necessitating surgical intervention due to its refractoriness to antiepileptic drugs (AEDs). Hippocampal sclerosis, a common underlying pathology, often exacerbates the severity by introducing cognitive and emotional challenges. This review delves deeper into the cognitive profile of TLE, along with the risk factors for cognitive disorders, depression, and anxiety in this population.
文摘Temporal lobe epilepsy is the most common form of focal epilepsy in adults,accounting for one third of all diagnosed epileptic patients,with seizures originating from or involving mesial temporal structures such as the hippocampus,and many of these patients being refractory to treatment with anti-epileptic drugs.Temporal lobe epilepsy is the most common childhood neurological disorder and,compared with adults,the symptoms are greatly affected by age and brain development.Diagnosis of temporal lobe epilepsy relies on clinical examination,patient history,electroencephalographic recordings,and brain imaging.Misdiagnosis or delay in diagnosis is common.A molecular biomarker that could distinguish epilepsy from healthy subjects and other neurological conditions would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated.Among possible biomarkers of pathological changes as well as potential therapeutic targets in the epileptic brain are micro RNAs.Most of the recent studies had performed micro RNA profiling in body fluids such as blood plasma and blood serum and brain tissues such as temporal cortex tissue and hippocampal tissue.A large number of micro RNAs were dysregulated when compared to healthy controls and with some overlap between individual studies that could serve as potential biomarkers.For example,in adults with temporal lobe epilepsy,possible biomarkers are miR-199a-3p in blood plasma and miR-142-5p in blood plasma and blood serum.In adults with mesial temporal lobe epilepsy,possible biomarkers are miR-153 in blood plasma and miR-145-3p in blood serum.However,in many of the studies involving patients who receive one or several anti-epileptic drugs,the influence of these on micro RNA expression in body fluids and brain tissues is largely unknown.Further studies are warranted with children with temporal lobe epilepsy and consideration should be given to utilizing mouse or rat and non-human primate models of temporal lobe epilepsy.The animal models could be used to confirm micro RNA findings in human patients and to test the effects of targeting specific micro RNAs on disease progression and behavior.
文摘Objective To explore the ability of interictal diffusion-weighted imaging(DWI)to localize the temporal lobe of seizure origin and to predict postoperative seizure control in patients with temporal lobe epilepsy(TLE).Methods Twenty-seven patients with intractable TLE considered for surgery and 19 healthy volunteers were studied with conventional magnetic resonance imaging(MRI)and DWI.Apparent diffusion coefficients(ADCs)of bilateral hippocampi in both TLE patients and control subjects were obtained.Lateralization to either temporal lobe with hippocampal ADC was based on the threshold values derived from ±1SD of right/left ratios in normal subjects.And the postoperative pathology was reviewed.Results Hippocampal ADCs were higher on the side of surgery compared with those on the contralateral side as well as the ipsilateral side in control subjects [resected side(109.8±7.3)×10-5 cm2/s,contralateral side(91.7±4.7)×10-5 cm2/s,control subjects(81.6±5.2)×10-5 cm2/s,all P<0.01].Right/left hippocampal ADC ratio and conventional MRI lateralized to the operated temporal lobe in 21 of 27(77.8%)and in 18 of 27(66.7%)patients.Lateralization to the surgical side was not associated with postoperative seizure control with right/left hippocampal ADC ratio(P>0.05).Conclusions Conventional MRI is a sensitive method to detect hippocampal sclerosis.Accuracy of the right/left hippocampal ADC ratio for lateralizing to the side of surgery is very high,but it isn't a better predictor of surgical outcome.
基金funded by the Natural Science Foundation of Hubei Province in China,No.02.02.040458
文摘Temporal lobe epilepsy is associated with astrogliosis. Notchl signaling can induce astrogliosis in glioma. However, it remains unknown whether Notchl signaling is involved in the pathogenesis of epilepsy. This study investigated the presence of Notchl, hairy and enhancer of split-l, and glial fibrillary acidic protein in the temporal neocortex and hippocampus of lithium-pilocar- pine-treated rats. The presence of Notchl and hairy and enhancer of split-1 was also explored in brain tissues of patients with intractable temporal lobe epilepsy. Quantitative electroencephalo- gram analysis and behavioral observations were used as auxiliary measures. Results revealed that the presence of Notchl, hairy and enhancer of split-l, and glial fibriUary acidic protein were en- hanced in status epilepticus and vehicle-treated spontaneous recurrent seizures rats, but remain unchanged in the following groups: control, absence of either status epilepticus or spontaneous recurrent seizures, and zileuton-treated spontaneous recurrent seizures. Compared with patient control cases, the presences of Notch1 and hairy and enhancer of split- 1 were upregulated in the temporal neocortex of patients with intractable temporal lobe epilepsy. Therefore, these results suggest that Notchl signaling may play an important role in the onset of temporal lobe epilepsy via astrogliosis. Furthermore, zileuton may be a potential therapeutic strategy for temporal lobe epilepsy by blocking Notchl signaling.
文摘BACKGROUND Neurosurgical treatment of severe bilateral occipital lobe epilepsy usually involves two operations several mos apart.AIM To evaluate surgical resection of bilateral occipital lobe lesions during a single operation as a treatment for bilateral occipital lobe epilepsy.METHODS This retrospective case series included patients with drug-refractory bilateral occipital lobe epilepsy treated surgically between March 2006 and November 2015.RESULTS Preoperative evaluation included scalp video-electroencephalography(EEG),magnetic resonance imaging,and PET-CT.During surgery(bilateral occipital craniotomy),epileptic foci and important functional areas were identified by EEG(intracranial cortical electrodes)and cortical functional mapping,respectively.Patients were followed up for at least 5 years to evaluate treatment outcome(Engel grade)and visual function.The 20 patients(12 males)were aged 4-30 years(median age,12 years).Time since onset was 3-20 years(median,8 years),and episode frequency was 4-270/mo(median,15/mo).Common manifestations were elementary visual hallucinations(65.0%),flashing lights(30.0%),blurred vision(20.0%)and visual field defects(20.0%).Most patients were free of disabling seizures(Engel grade I)postoperatively(18/20,90.0%)and at 1 year(18/20,90.0%),3 years(17/20,85.0%)and≥5 years(17/20,85.0%).No patients were classified Engel grade IV(no worthwhile improvement).After surgery,there was no change in visual function in 13/20(65.0%),development of a new visual field defect in 3/20(15.0%),and worsening of a preexisting defect in 4/20(20.0%).CONCLUSION Resection of bilateral occipital lobe lesions during a single operation may be applicable in bilateral occipital lobe epilepsy.
基金the National Natural Science Foundation of China, No. 81041058the Natural Science Foundation of Liaoning Province, No. 20092191
文摘Electroacupuncture was performed at the Wangu (GB 12) acupoint, whose position is similar to the cerebellar fastigial nucleus in rats with post-stroke depression. Results showed that the expression of nuclear factor-κB and the levels of tumor necrosis factor-α and interleukin-1β decreased. Simultaneously, the extent of edema in the hippocampus and frontal lobe decreased, and the morphology of the nerve cells recovered to near normal. In addition, fluoxetine treatment displayed a similar effect on post-stroke depression as electroacupuncture at GB 12 acupoint. The results indicate that electroacupuncture at GB 12 acupoint can reduce the levels of cytokines in the hippocampus and frontal lobe of rats with post-stroke depression, and thus provide a neuroprotective effect on post-stroke depression.
基金Funds for the Excellent Talent of Anhui Province of China, No.06043090National Century Excellent Talents in University of China, No.NCET-06-0557Natural Science Foundation of Anhui Province Department of Education, No. KJ2007A028
文摘BACKGROUND: Kainic acid can be used to induce a model of epilepsy by systemic injection, such as intraperitoneal or subcutaneous injection. Individual rats have different responses to kainic acid, therefore high doses of drug are required and the success rate of model induction is low. It is necessary to develop an improved method to establish a temporal lobe epilepsy (TLE) animal model. OBJECTIVE: To explore an economic, stable and efficient method of establishing a TLE animal model. DESIGN, TIME AND SETTING: A completely randomized, controlled study. The experiments were performed in the Cellular Function Laboratory of the Physiology Department, Anhui Medical University from March to July 2007. MATERIALS: Twenty adult male Wistar rats, weighing 230-260 g, were provided by the Experimental Animal Centre of Nanjing Medical University. Kainic acid was purchased from Sigma in USA. Type SN-2 stereotaxic apparatus was made by Narishge in Japan. METHODS: Wistar rats were randomly divided into a kainic acid (KA) group (n = 12) and a normal saline (NS) group (n = 8). For intrahippocampal microinjection, a burr hole was drilled in the skull at the following stereotaxic coordinates: anteroposterior (AP) 4.1 mm caudal to bregma; lateral (ML) 4.2 mm right lateral to the midline. Rats in the KA group were injected with 2.5 μL KA (0.4 g/L) into the center of the CA3 region, while in the NS group the same volume of NS was injected into the same site. MAIN OUTCOME MEASURES: Both groups were monitored under a video capture system for 12 weeks to record spontaneous seizures. Intracranial eletroencepholograph (IEEG) recordings in vivo were performed after the behavioral observations. After the IEEG recordings, hippocampi were processed into coronal sections. Nissl and Timm stainings were then performed to observe and confirm pathology. RESULTS: Twenty rats were involved in the final analysis. Behavioral observations: the eadiest spontaneous onset of epilepsy appeared 2 weeks after injection of KA. Eight rats had spontaneous onset of epilepsy 3-12 weeks after treatment. None of rats in the NS group had spontaneous onset of epilepsy. IEEG recordings: Epileptic-form waves, such as sharp waves and spike waves, were calculated by artificial analysis The number of epileptic-form waves in the KA group increased significantly compared to those of the NS group (P 〈 0.01). Morphology results: In the KA group, Nissl staining and Timm staining revealed typical pathology in the hippocampal temporosphenoid lobe. In the NS group, no pathology was observed. CONCLUSION: Intrahippocampal microinjection of KA is a reliable method to establish a temporal lobe epilepsy animal model, requiring low doses of kainic acid and giving a high rate of success.
基金supported by 2010 National Nature Science Foundation of China General Program(Program NO.8107I046)2012 Guangdong Provincial Science and Technology Program of China(Program NO.2012B032000009)2013 Guangdong Provincial Science and Technology Program of China(Program NO.2013B022000004)
文摘Objective:To detect the CHRNA7 gene mutation and polymorphism in Southern Han Chinese patients with nocturnal frontal lobe epilepsy(NFLE).Methods:Blood samples were collected from 215 Southern Han Chinese patients with NFLE and 200 healthy Southern Han Chinese control subjects.Genomic DNA was extracted,and CHRNA7 whole genome exons were amplified by the polymerase chain reaction and subjected to Sanger sequencing.Results:No CHRNA7 gene mutation was detected in all of the NFLE patients.However,five single nucleotide polymorphisms(SNPs)in sporadic cases were found,located in exons 5,6.and 7 of the CHRNA7 gene.Among them,c.690G>A and c.698A>G are known SNPs,while c.370G>A,c.654C>T,and c.497-498delTG were newly discovered SNPs.These SNPs were also found in some of the healthy controls.Conclusions:No CHRNA7 gene mutation was identified in Southern Han Chinese patients with NFLE.The CHRNA7 gene is probably not responsible for NFLE in this population.
文摘Objective To evaluate metabolic abnormalities in patients with mesial temporal lobe epilepsy (MTLE) with proton magnetic resonance spectroscopy (MRS) using a 3.0T MR scanner. Methods Sixty-three patients (32 women and 31 men) with diagnosed MTLE underwent diagnostic MR imaging (MRI) and proton MRS using a 3.0T MR scanner. The clinical history and interictal epileptiform discharges (IEDs) were recorded. Sixteen healthy volunteers served as control. The results of proton MRS were compared with the findings of electroencephalogram and structural MRI findings. Results Twenty-seven of the 63 patients with MTLE showed unilateral hippocampal sclerosis, and 9 showed bilateral hippocampal sclerosis. The concentration ratio of N-acytelaspartate (NAA) / [ creatine ( Cr ) + choline (Cho) ] in the hippocampal region of MTLE patients (0. 64±0. 07) was significantly lower than control (0. 80±0. 05, P = 0.023). In the patients with unilateral hippocampal sclerosis, NAA/(Cr + Cho) in the hippocampal region ipsilateral to the sclerotic hippocampus (0.56±0.06) was significantly lower than the ratio in the contralateral hippocampal region (0.69±0.07, P 〈 0. 001 ). There was significant difference in hippocampal NAA/( Cr + Cho) between the refractory patients and the non-refractory patients (0. 64±0. 05 vs.0.71±0. 07, P =0. 04). Forty-five patients were lateralized by IEDs, while 49 patients were lateralized by metabolite ratio. And lateralization determined by proton MRS and IEDs was concordant in 33 patients. Conclusions MRS as a noninvasive tool adds helpful metabolite information to routine MRI in evaluation of MTLE. The method is well established and should be a routine clinical application in the investigation of epilepsy.
基金the National Natural Science Foundation of China,No.30701122the Key Program of Beijing Natural Science Foundation,No.7051003
文摘Electroacupuncture (EA) has been clinically used to treat depression and has resulted in favorable effects in China. However, results from animal studies and pathology do not reflect the influence of electroacupuncture treatment on in vivo physiological functions. To thoroughly and dynamically observe pathological changes during depression, the present study established EA + fluoxetine and fluoxetine groups to observe depression in patients. 1H-magnetic resonance spectroscopy was utilized to determine the correlation between hippocampal frontal lobe metabolite changes and mental disorder scale. Results revealed significantly increased N-acetylaspartate (NAA)/creatine (Cr) in the bilateral hippocampus and right frontal lobe of depression patients treated with EA compared with fluoxetine. Changes in NAA/Cr in bilateral hippocampus and right frontal lobe in both groups, before and after treatment, negatively correlated with severity and curative effects. Choline/Cr changes in the bilateral frontal lobes of both groups were significant before and after treatment, but negatively correlated with curative effects. Choline/Cr changes in the bilateral hippocampus were significant in the EA + fluoxetine group before and after treatment, but negatively correlated with severity and the curative effects of depression. These results demonstrate abnormal biochemical metabolism in bilateral frontal lobes and hippocampus of depression patients, and show that EA significantly altered biochemical indices in the frontal lobes and hippocampus compared with fluoxetine.
基金supported by the Science and Technology Foundation of Guangdong Province,No.2008B060600063the National Natural Science Foundation of China,No. 81071050the Natural Science Foundation of Guangdong Province,No. S2011020005483
文摘The Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 regulate the levels of intracellular chloride in hippocampal cells. Impaired chloride transport by these proteins is thought to be involved in the pathophysiological mechanisms of mesial temporal lobe epilepsy. Imbalance in the relative expression of these two proteins can lead to a collapse of CI- homeostasis, resulting in a loss of gamma-aminobutyric acid-ergic inhibition and even epileptiform discharges. In this study, we investigated the expression of Na+-K+-CI- cotransporter 1 and K+-CI- cotransporter 2 in the sclerosed hippocampus of patients with mesial temporal lobe epilepsy, using western blot analysis and immunohistochemistry. Compared with the histologically normal hippocampus, the sclerosed hippocampus showed increased Na+-K+-Cl- cotransporter 1 expression and decreased K+-CI- cotransporter 2 expression, especially in CA2 and the dentate gyrus. The change was more prominent for the Na+-K+-CI- cotransporter 1 than for the K+-CI- cotransporter 2. These experimental findings indicate that the balance between intracellular and extracellular chloride may be disturbed in hippocampal sclerosis, contributing to the hyperexcitability underlying epileptic seizures. Changes in Na+-K+-CI-cotransporter 1 expression seems to be the main contributor. Our study may shed new light on possible therapies for patients with mesial temporal lobe epilepsy with hippocampal sclerosis.
基金Supported by the National Key R&D Program of China,Precision Medicine Program-Cohort Study on Nervous System Diseases,No.2017YFC0907702。
文摘The pathogenesis of temporal lobe epilepsy(TLE)was originally considered to be acquired.However,some reports showed that TLE was clustered in some families,indicating a genetic etiology.With the popularity of genetic testing technology,eleven different types of familial TLE(FTLE),including ETL1-ETL11,have been reported,of which ETL9-ETL11 had not yet been included in the OMIM database.These types of FTLE were caused by different genes/Loci and had distinct characteristics.ETL1,ETL7 and ETL10 were characterized by auditory,visual and aphasia seizures,leading to the diagnosis of familial lateral TLE.ETL2,ETL3 and ETL6 showed prominent autonomic symptom and automatism with or without hippocampal abnormalities,indicating a mesial temporal origin.Febrile seizures were common in FTLEs such as ETL2,ETL5,ETL6 and ETL11.ETL4 was diagnosed as occipitotemporal lobe epilepsy with a high incidence of migraine and visual aura.Considering the diversity and complexity of the symptoms of TLE,neurologists enquiring about the family history of epilepsy should ask whether the relatives of the proband had experienced unnoticeable seizures and whether there is a family history of other neurological diseases carefully.Most FTLE patients had a good prognosis with or without anti-seizure medication treatment,with the exception of patients with heterozygous mutations of the CPA6 gene.The pathogenic mechanism was diverse among these genes and spans disturbances of neuron development,differentiation and synaptic signaling.In this article,we describe the research progress on eleven different types of FTLE.The precise molecular typing of FTLE would facilitate the diagnosis and treatment of FTLE and genetic counseling for this disorder.
基金National Natural Science Foundation of China,Nos.82003 729 (to Ying W),82022071 (to YiW)Natural Science Foundation of Shandong Province of China,No.ZR2020QH357 (to Ying W)Public Welfare Technology Research Program of Zhejiang Province,No.LGF20H09001 1 (to JF)。
文摘Cognitive impairment is the most common complication in patients with temporal lobe epilepsy with hippocampal scle rosis.There is no effective treatment for cognitive impairment.Medial septum cholinergic neurons have been reported to be a potential target for controlling epileptic seizures in tempo ral lobe epile psy.However,their role in the cognitive impairment of temporal lobe epilepsy remains unclear.In this study,we found that patients with temporal lobe epile psy with hippocampal sclerosis had a low memory quotient and severe impairment in verbal memory,but had no impairment in nonverbal memory.The cognitive impairment was slightly correlated with reduced medial septum volume and medial septum-hippocampus tra cts measured by diffusion tensor imaging.In a mouse model of chronic temporal lobe epilepsy induced by kainic acid,the number of medial septum choline rgic neurons was reduced and acetylcholine release was reduced in the hippocampus.Furthermore,selective apoptosis of medial septum cholinergic neurons mimicked the cognitive deficits in epileptic mice,and activation of medial septum cholinergic neurons enhanced hippocampal acetylcholine release and restored cognitive function in both kainic acid-and kindling-induced epile psy models.These res ults suggest that activation of medial septum cholinergic neurons reduces cognitive deficits in temporal lobe epilepsy by increasing acetylcholine release via projections to the hippocampus.
文摘<b><span style="font-family:Verdana;">Background: </span></b><span style="font-family:Verdana;">Bilateral frontal lobes cerebral contusion and laceration is one unique brain injury in neurosurgery department. It is characteristic of recessive attacking and develops quickly. The unilateral cerebral falx incision is a new minimally invasive surgery </span><span style="font-family:Verdana;">that </span><span style="font-family:""><span style="font-family:Verdana;">can solve bilateral frontal lobes cerebral contusion and laceration in one surgery. However, it has some limitations in removal of contralateral frontal hematoma and hemostasis due to the limited field of view under the microscope. The unilateral bone window cerebral falx incision of bilateral frontal lobes cerebral contusion and laceration under a neuroendoscopy can acquire a good illumination and field of view. This is beneficial to complete removal of contralateral hematoma, effective hemostasis and retaining brain tissue functions to the maximum extent. </span><b><span style="font-family:Verdana;">Case Presentation:</span></b><span style="font-family:Verdana;"> The patient, a 55-year-old man, was hospitalized for “consciousness disorder by 12 h because of car accident”. </span><b><span style="font-family:Verdana;">Physical Examination: </span></b><span style="font-family:Verdana;">Coma, GCS score of E1V2M5, bilateral pupil diameter of 2 mm, presence of light response, contusion of scalp at the left top, peripheral dysphoria and bilateral Bartter syndrome negative. The patient has a history of non-traumatic cerebral stroke 3 years ago.</span><b><span style="font-family:Verdana;"> Head CT: </span></b><span style="font-family:Verdana;">Longitudinal fracture of frontal parietal occipital bone, bilateral frontal lobes contusion and laceration, subarachnoid hemorrhage. </span><b><span style="font-family:Verdana;">Diagnosis:</span></b><span style="font-family:Verdana;"> Bilateral frontal lobes contusion and laceration, longitudinal fracture of frontal parietal occipital bone, subarachnoid hemorrhage and hematoma of scalp. In emergency treatment, unilateral bone window cerebral falx incision of bilateral frontal lobes cerebral contusion and laceration under a neuroendoscopy was performed. The surgery has achieved satisfying effect. </span><b><span style="font-family:Verdana;">Discussion: </span></b><span style="font-family:Verdana;">This case realized the goal of removing contralateral frontal hematoma through unilateral craniotomy under a neuroendoscopy. Due to the clear field of view, it retained extracerebral layer structures of contralateral olfactory nerve protection frontotemporal completely. Moreover, this surgical technique is conducive to intraoperative recognition of pericallosal</span><span style="background:yellow;"> </span><span style="font-family:Verdana;">arteries and lateral fractured blood vessels. It also involves protection, which conforms to the minimally invasive philosophy. The proposed surgical technology can eliminate contralateral frontal hematoma under a good field of view. However, it is suggested not to manage with the further operation on patients who have brain swelling and difficulties in exposure of cerebral falx. These patients need to determine causes of brain swelling and choose bilateral craniectomy if necessary. </span><b><span style="font-family:Verdana;">Conclusions: </span></b><span style="font-family:Verdana;">Unilateral bone window cerebral falx incision of bilateral frontal lobes cerebral contusion and laceration under a neuroendoscopy is a new application of minimally invasive philosophy in craniocerebral injury operation. It still needs further clinical verifications and experience accumulation.
基金National Natural Science Foundation of China(91332202,81630098,81521062,81671282,81703480).
文摘OBJECTIVE To understand the underlying mechanisms of drug resistant temporal lobe epilepsy(TLE).METHODS In vivo and vitro electrophysiology,optogenetics and chemogenetics were used in a classic multi-drug resistant TLE model.RESULTS Subicular pyramidal neuron activity was not inhibited by the anti-epileptic drug phenytoin in drug resistant rats.This phenomenon was specific to the subiculum,but did not involve surrounding temporal lobe regions.Selective inhibition of subicular pyramidal neurons by both optogenetics and chemogenetics reversed drug resistance.In contrast,selective activation of subicular pyramidal neurons directly induced drug resistance in drug responsive rats.Furthermore,long-term low frequency stimulation at the subiculum,which is clinically feasible,inhibited the activity of subicular pyramidal neurons and reversed drug resistance.CONCLUSION Subicular pyramidal neurons might be a key ″ switch″ mediating drug resistance in TLE and represent a new potential target for more precise treatment of drug resistant TLE.
基金Supported by:Natural Science Research Plan for Jiangsu Colleges,No. 05KJD180165
文摘BACKGROUND: Inducible nitric oxide synthase (iNOS) cannot be detected in the neurons and glial cells of normal rats, but iNOS can be found in some neurons and glial cells of rats following ischemic, traumatic, neurotoxic or inflammatory damage. OBJECTIVE: To investigate iNOS expression and iNOS-positive cell types at various time points following damage to the rat frontal lobe using a sharp instrument. DESIGN: A nerve molecular biology, randomized, controlled study. TIME AND SETTING: This experiment was performed at the Department of Human Anatomy, Institute of Neurobiology, Medical School of Nantong University, between April 2006 and December 2007. MATERIALS: Rabbit anti-iNOS antibody (Santa Cruz, USA), biotin labeled goat anti-rabbit antibody (Sigma, USA), reverse transcription kit (Biouniquer, Hong Kong, China) and horseradish peroxidase labeled goat anti-rabbit antibody (Pierce, USA) were used for this study. METHODS: A total of 112 healthy rats aged 3 months were randomly assigned into a sham operation group (n = 28) and a damage group (n = 84). Rat models of frontal lobe damage were induced in the damage group using a sharp instrument to make an incision in the frontal lobe cortex. In the sham operation group, the rat bone window was opened but brain tissues were left intact. MAIN OUTCOME MEASURES: Parameters were measured at 3, 6, 12, 24, 72, 120 and 168 hours following damage in both groups. Pathological changes were observed using Nissl staining and hematoxylin-eosin staining. Expression of iNOS mRNA, iNOS protein and iNOS-positive cells were examined by RT-PCR, Western blot analysis and immunohistochemistry, respectively. RESULTS: A large number of inflammatory cells infiltrated the damaged region 12 and 24 hours following damage, iNOS mRNA and iNOS protein expression increased in and around the damaged region 3 hours following damage, reached a peak at 24 hours, and then gradually decreased. The changes in iNOS-positive cell number reflected the changes in iNOS mRNA and iNOS protein expression after damage, iNOS was mainly found in neural cells at 3 and 6 hours, in macrophages at 12 and 24 hours, and in glial cells at 72 and 120 hours after damage. iNOS-positive cells were few in and surrounding the damaged region at 168 hours. There were a few iNOS-positive neural cells in the rat frontal lobe cortex in the sham operation group. CONCLUSION: Neurons, macrophages and glial cells can express iNOS following rat frontal lobe damage caused by a sharp instrument. The levels of iNOS expression, and the cell types expressing iNOS, change with time.
文摘Serotonin (5-hydroxytryptamine, 5-HT) influences the cortical and subcortical excitatory/inhibitory balance and participates in the pathophysiological processes of epilepsy. The serotonin transporter (5-HTT) is the most important factor in serotonin inactivation. We tested whether 5-HTT polymorphisms are involved in the pathogenesis of epilepsy in Chinese Han population. We did not find a significant difference in the frequencies of genotypes and alleles in the 5-HTT gene-linked poLymorphic region (5-H-I-FLPR) in patients with non-lesional temporal lobe epilepsy and normal controls (P〉 0.05). Frequencies of the 5-H1-1- intron 2 variable number tandem repeat (5-HTTVNTR) 12/12 genotype and allele 12 were higher in the patients with non-lesional temporal lobe epilepsy than normal controls (P 〈 0.01). The odds ratio of affecting non-lesional temporal lobe epilepsy was 1.435 (95% Cl, 1.096 1.880) in patients carrying allele 12 (P 〈 0.05). Although the 5-HTTLPR may not be a genetic locus of non-lesional temporal lobe epilepsy in Chinese Hart population, allele 12 in the 5-HTTVNTR may correlate with non-lesional temporal lobe epilepsy. The Stin2.12 allele and 12/12 genotype could be predisposing to non-lesional temporal lobe epilepsy.
基金National Natural Science Foundation of China(81874429)Natural Science Foundation of Hunan Province(2020JJ5294)+3 种基金Traditional Chinese Medicine Science&Research Project of Hunan Province(202145)Excellent Youth Program of Hunan Education Department(21B0081)Hunan Provincial Administration of Traditional Chinese Medicine(D2022027)Changsha Natural Science Foundation of China(KQ2202255).
文摘Objective To explore the effect and mechanism of Chaihu Longgu Muli Decoction(柴胡龙骨牡蛎汤,CHLGMLD)in rats with temporal lobe epilepsy(TLE).Methods A total of 80 Sprague-Dawley(SD)male rats were randomized into control(CON),model(MOD),carbamazepine(CBZ,0.1 g/kg),CHLGMLD low dose(CHLGMLD-L,12.5 g/kg),and high dose(CHLGMLD-H,25 g/kg)groups,with 16 rats in each group.TLE rat models were established in the four groups with the use of lithium-pilocarpine except for the CON group.After the successful establishment of TLE models,all drugs were administered through gavage,and distilled water was given to rats in the CON and MOD groups for four weeks.The frequency and duration of seizures before and after treatment were recorded for the evaluation of the alleviation degree.Quantitative real-time polymerase chain reaction(qRT-PCR)was used to detect the expression levels of miR-146a-3p and miR-146a-5p.The expression levels of toll-like receptor 4(TLR4),interleukin-1 receptor-associated kinase 1(IRAK1),tumor necrosis factor(TNF)receptor-associated factor 6(TRAF6),TAK1-binding protein(TAB),nuclear factor-kappa B(NF-κB),and interleukin-1 beta(IL-1β)in hippocampus were tested by immunofluorescence assay.Correlation analysis between the above factors and expressions of miR-146a-3p and miR-146a-5p were performed separately.Results CHLGMLD decreased the frequency(P<0.05)and duration(P<0.01)of seizures in rats.CHLGMLD down-regulated the expression levels of miR-146a-5p and miR-146a-3p(P<0.05),and inhibited the expression levels of TLR4,IRAK1,TRAF6,TAB,NF-κB,and IL-1β(P<0.01).The correlation analysis revealed that the expression levels of TLR4,IRAK1,TRAF6,TAB,NF-κB,and IL-1β were positively correlated with the expression levels of miR-146a-3p and miR-146a-5p detected by qRT-PCR,respectively(P<0.01).Conclusion CHLGMLD can inhibite the TLR4 signaling pathway by lowering the expression levels of miR-146a-3p and miR-146a-5p to alleviate hippocampal dentate gyrus inflammation in TLE rats,thus relieving seizures.