期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Er intercalation and its impact on transport properties of epitaxial graphene
1
作者 杨明敏 端勇 +3 位作者 孔雯霞 章晋哲 王剑心 蔡群 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期404-409,共6页
Intercalation of atomic species is a practicable method for epitaxial graphene to adjust the electronic band structure and to tune the coupling between graphene and Si C substrate. In this work, atomically flat epitax... Intercalation of atomic species is a practicable method for epitaxial graphene to adjust the electronic band structure and to tune the coupling between graphene and Si C substrate. In this work, atomically flat epitaxial graphene is prepared on 4H-SiC(0001) using the flash heating method in an ultrahigh vacuum system. Scanning tunneling microscopy, Raman spectroscopy and electrical transport measurements are utilized to investigate surface morphological structures and transport properties of pristine and Er-intercalated epitaxial graphene. It is found that Er atoms are intercalated underneath the graphene layer after annealing at 900℃, and the intercalation sites of Er atoms are located mainly at the bufferlayer/monolayer-graphene interface in monolayer domains. We also report the different behaviors of Er intercalation in monolayer and bilayer regions, and the experimental results show that the diffusion barrier for Er intercalated atoms in the buffer-layer/monolayer interface is at least 0.2 eV higher than that in the first/second graphene-layer interface. The appearance of Er atoms is found to have distinct impacts on the electronic transports of epitaxial graphene on SiC(0001). 展开更多
关键词 epitaxial graphene INTERCALATION scanning tunneling microscopy(STM) electrical transport
下载PDF
A self-powered sensitive ultraviolet photodetector based on epitaxial graphene on silicon carbide 被引量:1
2
作者 黄郊 郭丽伟 +8 位作者 芦伟 张永晖 史哲 贾玉萍 李治林 杨军伟 陈洪祥 梅增霞 陈小龙 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期458-462,共5页
A self-powered graphene-based photodetector with high performance is particularly useful for device miniaturization and to save energy.Here,we report a graphene/silicon carbide(SiC)-based self-powered ultraviolet ph... A self-powered graphene-based photodetector with high performance is particularly useful for device miniaturization and to save energy.Here,we report a graphene/silicon carbide(SiC)-based self-powered ultraviolet photodetector that exhibits a current responsivity of 7.4 m A/W with a response frequency of over a megahertz under 325-nm laser irradiation.The built-in photovoltage of the photodetector is about four orders of magnitude higher than previously reported results for similar devices.These favorable properties are ascribed to the ingenious device design using the combined advantages of graphene and SiC,two terminal electrodes,and asymmetric light irradiation on one of the electrodes.Importantly,the photon energy is larger than the band gap of SiC.This self-powered photodetector is compatible with modern semiconductor technology and shows potential for applications in ultraviolet imaging and graphene-based integrated circuits. 展开更多
关键词 epitaxial graphene ultraviolet photodetector SIC SELF-POWERED
下载PDF
Spectroscopic and scanning probe analysis on large-area epitaxial graphene grown under pressure of 4 mbar on 4H-SiC(0001)substrates 被引量:1
3
作者 王党朝 张玉明 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期573-578,共6页
We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape contin... We produced epitaxial graphene under a moderate pressure of 4 mbar (about 400 Pa) at temperature 1600 ℃. Raman spectroscopy and optical microscopy were used to confirm that epitaxial graphene has taken shape continually with slight thickness variations and regularly with a centimeter order of magnitude on 4H-SiC (0001) substrates. Then using X-ray photoelectron spectroscopy and Auger electron spectroscopy, we analyzed the chemical compositions and estimated the layer number of epitaxial graphene. Finally, an atomic force microscope and a scanning force microscope were used to characterize the morphological structure. Our results showed that under 4-mbar pressure, epitaxial graphene could be produced on a SiC substrate with a large area, uniform thickness but a limited morphological property. We hope our work will be of benefit to understanding the formation process of epitaxial graphene on SiC substrate in detail. 展开更多
关键词 SiC substrate graphene epitaxial graphene
下载PDF
Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates
4
作者 何泽召 杨克武 +6 位作者 蔚翠 刘庆彬 王晶晶 宋旭波 韩婷婷 冯志红 蔡树军 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第8期100-104,共5页
Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect tran... Monolayer and bilayer graphenes have generated tremendous excitement as the potentially useful electronic materials due to their unique features. We report on monolayer and bilayer epitaxial graphene field-effect transistors (GFETs) fabricated on SiC substrates. Compared with monolayer GFETs, the bilayer GFETs exhibit a significant improvement in dc characteristics, including increasing current density I DS, improved transconductance g m, reduced sheet resistance lion, and current saturation. The improved electrical properties and tunable bandgap in the bilayer graphene lead to the excellent dc performance of the bilayer GFETs. Furthermore, the improved dc characteristics enhance a better rf performance for bilayer graphene devices, demonstrating that the quasifree-standing bilayer graphene on SiC substrates has a great application potential for the future graphene-based electronics. 展开更多
关键词 of in is for SIC Comparative Study of Monolayer and Bilayer epitaxial graphene Field-Effect Transistors on SiC Substrates on
下载PDF
Temperature dependence of the thickness and morphology of epitaxial graphene grown on SiC (0001) wafers
5
作者 郝昕 陈远富 +7 位作者 李萍剑 王泽高 刘竞博 贺加瑞 樊睿 孙继荣 张万里 李言荣 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第4期438-441,共4页
Epitaxiai graphene is synthesized by silicon sublimation from the Si-terminated 6H SiC substrate. The effects of graphitization temperature on the thickness and surface morphology of epitaxial graphene are investigate... Epitaxiai graphene is synthesized by silicon sublimation from the Si-terminated 6H SiC substrate. The effects of graphitization temperature on the thickness and surface morphology of epitaxial graphene are investigated. X-ray photoelectron spectroscopy spectra and atomic force microscopy images reveal that the epitaxial graphene thickness increases and the epitaxial graphene roughness decreases with the increase in graphitization temperature. This means that the thickness and roughness of epitaxial graphene films can be modulated by varying the graphitization temperature. In addition, the electrical properties of epitaxial graphene film are also investigated by Hall effect measurement. 展开更多
关键词 epitaxial graphene thickness MORPHOLOGY graphitization temperature
下载PDF
Raman analysis of epitaxial graphene grown on 4H-SiC (0001) substrate under low pressure condition
6
作者 王党朝 张玉明 +5 位作者 张义门 雷天民 郭辉 王悦湖 汤晓燕 王航 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第12期439-442,共4页
In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400,... In this paper, we report a feasible route of growing epitaxial graphene on 4H-SiC (0001) substrate in a low pressure of 4 mbar (1 bar=105 Pa) with an argon flux of 2 standard liters per minute at 1200, 1300, 1400, and 1500 ℃ in a commercial chemical vapour deposition SiC reactor. Using Raman spectroscopy and scanning electron microscopy, we confirm that epitaxial graphene evidently forms on SiC surface above 1300 ℃ with a size of several microns. By fitting the 2D band of Raman data with two-Lorentzian function, and comparing with the published reports, we conclude that epitaxial graphene grown at 1300 ℃ is four-layer graphene. 展开更多
关键词 SiC substrate epitaxial graphene Raman spectroscopy
下载PDF
Significant photoelectrical response of epitaxial graphene grown on Si-terminated 6H-SiC
7
作者 郝昕 陈远富 +3 位作者 王泽高 刘竞博 贺加瑞 李言荣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期37-40,共4页
Photoelectrical response characteristics of epitaxial graphene (EG) films on Si- and C-terminated 6H-SiC, and transferred chemical vapor deposition (CVD) graphene films on Si-terminated 6H-SiC have been investigat... Photoelectrical response characteristics of epitaxial graphene (EG) films on Si- and C-terminated 6H-SiC, and transferred chemical vapor deposition (CVD) graphene films on Si-terminated 6H-SiC have been investigated. The results show that upon illumination by a xenon lamp, the photocurrent of EG grown on Si-terminated SiC significantly increases by 147.6%, while the photocurrents of EG grown on C-terminated SiC, and transferred CVD graphene on Si-terminated SiC slightly decrease by 0.5% and 2.7%, respectively. The interfacial buffer layer between EG and Si-terminated 6H-SiC is responsible for the significant photoelectrical response of EG. Its strong photoelectrical response makes it promising for optoelectronic applications. 展开更多
关键词 epitaxial graphene photoelectrical response oxygen absorption
下载PDF
Comparison of the formation epitaxial graphenes on Si- and process and properties of C-face 6H-SiC substrates
8
《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期480-483,共4页
In this paper, the epitaxial graphene layers grown on Si- and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600℃ By using atomic force microscopy and Raman spectroscopy, we find that th... In this paper, the epitaxial graphene layers grown on Si- and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600℃ By using atomic force microscopy and Raman spectroscopy, we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates, including the hydrogen etching process, the stacking type, and the number of layers. Hopefully, our results will be useful for improving the quality of the epitaxial graphene on SiC substrate. 展开更多
关键词 SiC substrate epitaxial graphene Raman spectroscopy
下载PDF
High temperature characteristics of bilayer epitaxial graphene field-effect transistors on SiC Substrate
9
作者 何泽召 杨克武 +6 位作者 蔚翠 刘庆彬 王晶晶 李佳 芦伟立 冯志红 蔡树军 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第6期463-467,共5页
In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point... In this paper,high temperature direct current(DC) performance of bilayer epitaxial graphene device on SiC substrate is studied in a temperature range from 25℃ to 200℃.At a gate voltage of-8 V(far from Dirac point),the drainsource current decreases obviously with increasing temperature,but it has little change at a gate bias of +8 V(near Dirac point).The competing interactions between scattering and thermal activation are responsible for the different reduction tendencies.Four different kinds of scatterings are taken into account to qualitatively analyze the carrier mobility under different temperatures.The devices exhibit almost unchanged DC performances after high temperature measurements at 200℃ for 5 hours in air ambience,demonstrating the high thermal stabilities of the bilayer epitaxial graphene devices. 展开更多
关键词 epitaxial graphene field-effect transistor high temperature characteristics
下载PDF
Effect of 6H-SiC (1120) substrate on epitaxial graphene revealed by Raman scattering
10
作者 林菁菁 郭丽伟 +4 位作者 贾玉萍 陈莲莲 芦伟 黄郊 陈小龙 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期27-32,共6页
A nonpolar SiC(1120) substrate has been used to fabricate epitaxial graphene (EG). Two EGs with layer numbers of 8-10 (referred to as MLG) and 2-3 (referred to as FLG) were used as representative to study the ... A nonpolar SiC(1120) substrate has been used to fabricate epitaxial graphene (EG). Two EGs with layer numbers of 8-10 (referred to as MLG) and 2-3 (referred to as FLG) were used as representative to study the substrate effect on EG through temperature-dependent Raman scattering. It is found that Raman lineshifts of G and 2D peaks of the MLG with temperature are consistent with that of free graphene, as predicted by theory calculation, indicating that the substrate influence on the MLG is undetectable. While Raman G peak lineshifts of the FLG to that of the free graphene are obvious, however, its lineshift rate (-0.016 cm-1/K) is almost one third of that (-0.043 cm-1/K) of an EG on 6H-SiC (0001) in the temperature range from 300 K to 400 K, indicating a weak substrate effect from SiC (1120) on the FLG. This renders the FLG with a high mobility around 1812 cm2.V-1 .s -1 at room temperature even with a very high carrier concentration about 2.95 × 10 ^13 cm-2 (p-type). These suggest SiC (1120) is more suitable for fabricating EG with high performance. 展开更多
关键词 epitaxial graphene 6H-SiC (1120) temperature dependent Raman scattering
下载PDF
Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices
11
作者 何泽召 杨克武 +5 位作者 蔚翠 李佳 刘庆彬 芦伟立 冯志红 蔡树军 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第11期118-121,共4页
We report on an improved metal-graphene ohmic contact in bilayer epitaxial graphene on a SiC substrate with contact resistance below 0.1 Ω.mm. Monolayer and bilayer epitaxial graphenes are prepared on a 4HoSiC substr... We report on an improved metal-graphene ohmic contact in bilayer epitaxial graphene on a SiC substrate with contact resistance below 0.1 Ω.mm. Monolayer and bilayer epitaxial graphenes are prepared on a 4HoSiC substrate in this work. Their contact resistances are measured by a transfer length method. An improved photoresist-free device fabrication method is used and is compared with the conventional device fabrication method. Compared with the monolayer graphene, the contact resistance Rc of bilayer graphene improves from an average of 0.24Ω·mm to 0. 1 Ωmm. Ohmic contact formation mechanism analysis by Landauer's approach reveals that the obtained low ohmic contact resistance in bilayer epitaxial graphene is due to their high carrier density high carrier transmission probability, and p-type doping introduced by contact metal Au. 展开更多
关键词 Improvement of Metal-graphene Ohmic Contact Resistance in Bilayer epitaxial graphene Devices
下载PDF
Comparison of the formation process and properties of epitaxial graphenes on Si-and C-face 6H-SiC substrates
12
作者 王党朝 张玉明 +5 位作者 张义门 雷天民 郭辉 王悦湖 汤晓燕 王航 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第3期480-483,共4页
In this paper,the epitaxial graphene layers grown on Si-and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 C.By using atomic force microscopy and Raman spectroscopy,we find that there... In this paper,the epitaxial graphene layers grown on Si-and C-face 6H-SiC substrates are investigated under a low pressure of 400 Pa at 1600 C.By using atomic force microscopy and Raman spectroscopy,we find that there are distinct differences in the formation and the properties between the epitaxial graphene layers grown on the Si-face and the C-face substrates,including the hydrogen etching process,the stacking type,and the number of layers.Hopefully,our results will be useful for improving the quality of the epitaxial graphene on SiC substrate. 展开更多
关键词 SiC substrate epitaxial graphene Raman spectroscopy
全文增补中
Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111)substrate
13
作者 表奕 路红亮 +3 位作者 彭浩 宋志朋 郭辉 林晓 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期506-509,共4页
Intercalation of insulating materials between epitaxial graphene and the metal substrates is highly demanded to restore the intrinsic properties of graphene,and thus essential for the graphene-based devices.Here we de... Intercalation of insulating materials between epitaxial graphene and the metal substrates is highly demanded to restore the intrinsic properties of graphene,and thus essential for the graphene-based devices.Here we demonstrate a successful solution for the intercalation of hafnium oxide into the interface between full-layer graphene and Ir(111)substrate.We first intercalate hafnium atoms beneath the epitaxial graphene.The intercalation of the hafnium atoms leads to the variation of the graphene moire superstructure periodicity,which is characterized by low-energy electron diffraction(LEED)and lowtemperature scanning tunneling microscopy(LT-STM).Subsequently,we introduce oxygen into the interface,resulting in oxidization of the intercalated hafnium.STM and Raman's characterizations reveal that the intercalated hafnium oxide layer could effectively decouple the graphene from the metallic substrate,while the graphene maintains its high quality.Our work suggests a high-k dielectric layer has been successfully intercalated between high-quality epitaxial graphene and metal substrate,providing a platform for applications of large-scale,high-quality graphene for electronic devices. 展开更多
关键词 epitaxial graphene HAFNIUM INTERCALATION OXIDIZATION
下载PDF
Raman analysis of epitaxial graphene on 6H-SiC(000) substrates under low pressure environment 被引量:1
14
作者 王党朝 张玉明 +5 位作者 张义门 雷天民 郭辉 王悦湖 汤晓燕 王航 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第11期39-42,共4页
This article investigates the formation mechanism of epitaxial graphene on 6H-SiC (0001) substrates under low pressure of 2 mbar environment. It is shown that the growth temperature dramatically affects the formatio... This article investigates the formation mechanism of epitaxial graphene on 6H-SiC (0001) substrates under low pressure of 2 mbar environment. It is shown that the growth temperature dramatically affects the formation and quality of epitaxial graphene. The higher growing temperature is of great benefit to the quality of epitaxial graphene and also can reduce the impact of the substrate for graphene. By analyzing Raman data, we conclude that epitaxial graphene grown at 1600 ℃ has a turbostratic graphite structure. The test from scanning electron microscopy (SEM) indicates that the epitaxial graphene has a route for fabricating larger size of epitaxial graphene on SiC size of 10μm. This research will provide a feasible substrate. 展开更多
关键词 epitaxial graphene Raman spectroscopy turbostratic graphite SIC
原文传递
Self-organized metal-semiconductor epitaxial graphene layer on off-axis 4H-SiC(0001)
15
作者 Debora Pierucci Haikel Sediri +8 位作者 Mahdi Hajlaoui Emilio Velez-Fort Yannick J. Dappe Mathieu G. Silly Rachid Belkhou Abhay Shukla Fausto Sirotti Noelle Gogneau Abdelkarim Ouerghi 《Nano Research》 SCIE EI CAS CSCD 2015年第3期1026-1037,共12页
The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and d... The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and demonstrate the formation of periodic arrangement of monolayer graphene on planar (0001) terraces and Bernal bilayer graphene on (1120) nanofacets of SiC. We investigate these lateral superlattices using Raman spectroscopy, atomic force microscopy/ electrostatic force microscopy (AFM/EFM) and X-ray and angle resolved photoemission spectroscopy (XPS/ARPES). The correlation of EFM and ARPES reveals the appearance of permanent electronic band gaps in AB-stacked bilayer graphene on (1120) SiC nanofacets of 150 meV. This feature is confirmed by density functional theory (DFT) calculations. The charge transfer between the substrate and graphene bilayer results in an asymmetric charge distribution between the top and the bottom graphene layers opening an energy gap. This surface organization can be thus defined as self-organized metal-semiconductor graphene. 展开更多
关键词 epitaxial graphene layer monolayer BILAYER band gap opening Bernal stacking off-axis silicon carbide electronic properties
原文传递
Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials
16
作者 Chaofei Liu Jian Wang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2022年第7期74-80,共7页
Superlattice potentials are theoretically predicted to modify the single-particle electronic structures. The resulting Coulomb-interaction-dominated low-energy physics would generate highly novel many-body phenomena. ... Superlattice potentials are theoretically predicted to modify the single-particle electronic structures. The resulting Coulomb-interaction-dominated low-energy physics would generate highly novel many-body phenomena. Here,by in situ tunneling spectroscopy, we show the signatures of superstructure-modulated correlated electron states in epitaxial bilayer graphene(BLG) on 6H-Si C(0001). As the carrier density is locally quasi-‘tuned’ by the superlattice potentials of a 6 × 6 interface reconstruction phase, the spectral-weight transfer occurs between the two broad peaks flanking the charge-neutral point. Such a detected non-rigid band shift beyond the single-particle band description implies the existence of correlation effects, probably attributed to the modified interlayer coupling in epitaxial BLG by the 6×6 reconstruction as in magic-angle BLG by the moiré potentials. Quantitative analysis suggests that the intrinsic interface reconstruction shows a high carrier tunability of ~1/2 filling range, equivalent to the back gating by a voltage of ~70 V in a typical gated BLG/SiO_(2)/Si device. The finding in interfacemodulated epitaxial BLG with reconstruction phase extends the BLG platform with electron correlations beyond the magic-angle situation, and may stimulate further investigations on correlated states in graphene systems and other van der Waals materials. 展开更多
关键词 BLG RED profile STM Spectroscopic Evidence for Electron Correlations in epitaxial Bilayer graphene with Interface-Reconstructed Superlattice Potentials graphene
下载PDF
Morphological features and nanostructures generated during SiC graphitization process
17
作者 孔雯霞 端勇 +2 位作者 章晋哲 王剑心 蔡群 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期638-643,共6页
Surface morphological features and nanostructures generated during SiC graphitization process can significantly affect fabrication of high-quality epitaxial graphene on semiconductor substrates.In this work,we investi... Surface morphological features and nanostructures generated during SiC graphitization process can significantly affect fabrication of high-quality epitaxial graphene on semiconductor substrates.In this work,we investigate the surface morphologies and atomic structures during graphitization process of 4H-SiC(0001) using scanning tunneling microscopy.Our high-magnified scanning-tunneling-microscope images exhibit the appearance and gradual developments of SiC(1 × 1)nanostructures after 1100℃ cleaning treatments,irregularly distributed among carbon nanocaps and(√3×√3) reconstruction domains.A model for the formation and growth progression of SiC(1 × 1) nanostructures has been proposed.When post-annealing temperature reaches 1300 ℃,the nanoholes and nanoislands can be observed on the surface,and multilayer graphene is often detected lying on the top surface of those nanoislands.These results provide profound insights into the complex evolution process of surface morphology during SiC thermal decomposition and will shed light on fabrication of SiC nanostructures and graphene nanoflakes. 展开更多
关键词 scanning tunneling microscopy(STM) SiC graphitization epitaxial graphene NANOSTRUCTURES
下载PDF
Transfer-free chemical vapor deposition graphene for nitride epitaxy: challenges, current status and future outlook
18
作者 Xiang Gao Senlin Li +4 位作者 Jingfeng Bi Kaixuan Zhou Meng Li Zhongfan Liu Jingyu Sun 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第3期824-840,共17页
Graphene, a two-dimensional material with outstanding electrical and mechanical properties, has attracted considerable attention in the field of semiconductor technologies due to its potential use as a buffer layer fo... Graphene, a two-dimensional material with outstanding electrical and mechanical properties, has attracted considerable attention in the field of semiconductor technologies due to its potential use as a buffer layer for the epitaxial Ⅲ-nitride growth. In recent years, significant progress has been made in the chemical vapor deposition growth of graphene on various insulating substrates for the nitride epitaxy, which offers a facile, inexpensive, and easily scalable methodology. However, certain challenges are still present in the form of producing high-quality graphene and achieving optimal interface compatibility with Ⅲ-nitride materials.In this review, we provide an overview of the bottlenecks associated with the transferred graphene fabrication techniques and the state-of-the-art techniques for the transfer-free graphene growth. The present contribution highlights the current progress in the transfer-free graphene growth on different insulating substrates, including sapphire, quartz, SiO_(2)/Si, and discusses the potential applications of transfer-free graphene in the Ⅲ-nitride epitaxy. Finally, it includes the prospects of the transfer-free graphene growth for the Ⅲ-nitride epitaxy and the challenges that should be overcome to realize its full potential in this field. 展开更多
关键词 Transfer-free chemical vapor deposition graphene for nitride epitaxy challenges current status and future outlook graphene
原文传递
Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil 被引量:46
19
作者 Xiaozhi Xu Zhihong Zhang +20 位作者 Jichen Dong Ding Yi Jingjing Niu Muhong Wu Li Lin Rongkang Yin Mingqiang Li Jingyuan Zhou Shaoxin Wang Junliang Sun Xiaojie Duan Peng Gao Ying Jiang Xiaosong Wu Hailin Peng Rodney S. Ruoff Zhongfan Liu Dapeng Yu Enge Wang Feng Ding Kaihui Liu 《Science Bulletin》 SCIE EI CAS CSCD 2017年第15期1074-1080,共7页
A foundation of the modern technology that uses single-crystal silicon has been the growth of highquality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-are... A foundation of the modern technology that uses single-crystal silicon has been the growth of highquality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality(ideally of single-crystal) material will be enabling. Since the first growth on copper foil a decade ago, inch-sized single-crystal graphene has been achieved. We present here the growth, in 20 min, of a graphene film of(5 ×50) cm^2 dimension with >99% ultra-highly oriented grains.This growth was achieved by:(1) synthesis of metre-sized single-crystal Cu(1 1 1) foil as substrate;(2)epitaxial growth of graphene islands on the Cu(1 1 1) surface;(3) seamless merging of such graphene islands into a graphene film with high single crystallinity and(4) the ultrafast growth of graphene film.These achievements were realized by a temperature-gradient-driven annealing technique to produce single-crystal Cu(1 1 1) from industrial polycrystalline Cu foil and the marvellous effects of a continuous oxygen supply from an adjacent oxide. The as-synthesized graphene film, with very few misoriented grains(if any), has a mobility up to ~23,000 cm^2 V^(-1)s^(-1)at 4 K and room temperature sheet resistance of ~230 Ω/□. It is very likely that this approach can be scaled up to achieve exceptionally large and high-quality graphene films with single crystallinity, and thus realize various industrial-level applications at a low cost. 展开更多
关键词 Single-crystal Industrial Cu graphene Ultrafast epitaxial
原文传递
Single step fabrication of N-doped graphene/Si3N4/SiC heterostructures 被引量:1
20
作者 Emilio Velez-Fort Emiliano Pallecchi +5 位作者 Mathieu G. Silly Mounib Bahri Gilles Patriarche Abhay Shukla Fausto Sirotti Abdelkarim Ouerghi 《Nano Research》 SCIE EI CAS CSCD 2014年第6期835-843,共9页
In-plane heteroatom substitution of graphene is a promising strategy to modify its properties. The ability to dope graphene with electron-donor nitrogen heteroatoms is highly important for modulating electrical proper... In-plane heteroatom substitution of graphene is a promising strategy to modify its properties. The ability to dope graphene with electron-donor nitrogen heteroatoms is highly important for modulating electrical properties of graphene. Here we demonstrate a transfer-free method to directly grow large area quasi free-standing N-doped graphene bilayers on an insulating substrate (Si3N4). Electron-bombardment heating under nitrogen flux results in simultaneous growth of N-doped graphene and a Si3N4 layer on the SiC surface. The decoupling of N-doped graphene from the substrate and the presence of Si3N4 are identified by X-ray photoemission spectroscopy and low-energy electron diffraction. The substitution of nitrogen atoms in the graphene planes was confirmed using high resolution X-ray photoemission spectroscopy which reveals several atomic configurations for the nitrogen atoms: Graphitic-like, pyridine-like, and pyrrolic- like. Furthermore, we demonstrated for the first time that N-doped graphene could be used to efficiently probe oxygen molecules via nitrogen atom defects. 展开更多
关键词 epitaxial graphene spectroscopy nitrogen-doped graphene low-energy electronmicroscopy electronic properties
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部