期刊文献+
共找到4,701篇文章
< 1 2 236 >
每页显示 20 50 100
Bone morphogenetic protein-6 suppresses TGF-β_(2)-induced epithelial-mesenchymal transition in retinal pigment epithelium
1
作者 Xuan Liu Ming Liu +5 位作者 Meng Ji Bo Ma Yu-Cen Hou Xin-Yue Yao Qiao-Chu Cheng Li Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第4期646-652,共7页
AIM:To evaluate the effect of bone morphogenetic protein-6(BMP-6)on transforming growth factor(TGF)-β_(2)-induced epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE).METHODS:Adult retinal pigment... AIM:To evaluate the effect of bone morphogenetic protein-6(BMP-6)on transforming growth factor(TGF)-β_(2)-induced epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE).METHODS:Adult retinal pigment epithelial cell line(ARPE-19)were randomly divided into control,TGF-β_(2)(5μg/L),and BMP-6 small interfering RNA(siRNA)group.The cell morphology was observed by microscopy,and the cell migration ability were detected by Transwell chamber.The EMT-related indexes and BMP-6 protein levels were detected by Western blotting.Furthermore,a BMP-6 overexpression plasmid was constructed and RPE cells were divided into the control group,TGF-β_(2)+empty plasmid group,BMP-6 overexpression group,and TGF-β_(2)+BMP-6 overexpression group.The EMT-related indexes and extracellular regulated protein kinases(ERK)protein levels were detected.RESULTS:Compared with the control group,the migration of RPE cells in the TGF-β_(2) group was significantly enhanced.TGF-β_(2) increased the protein expression levels ofα-smooth muscle actin(α-SMA),fibronectin and vimentin but significantly decreased the protein levels of E-cadherin and BMP-6(P<0.05)in RPE.Similarly,the migration of RPE cells in the BMP-6 siRNA group was also significantly enhanced.BMP-6 siRNA increased the protein expression levels ofα-SMA,fibronectin and vimentin but significantly decreased the protein expression levels of E-cadherin(P<0.05).Overexpression of BMP-6 inhibited the migration of RPE cells induced by TGF-β_(2) and prevented TGF-β_(2) from affecting EMT-related biomarkers(P<0.05).CONCLUSION:BMP-6 prevents the EMT in RPE cells induced by TGF-β_(2),which may provide a theoretical basis for the prevention and treatment of proliferative vitreoretinopathy. 展开更多
关键词 bone morphogenetic protein-6 epithelialmesenchymal transition transforming growth factor-β_(2) retinal pigment epithelial cells cell migration
下载PDF
In vitro inhibition of proliferation,migration and epithelial-mesenchymal transition of human lens epithelial cells by fasudil 被引量:8
2
作者 Jing-Zhi Shao Ying Qi +3 位作者 Shan-Shan Du Wen-Wen Du Fu-Zhen Li Feng-Yan Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第8期1253-1257,共5页
AIM: To study the potential role of fasudil as a treatment for posterior capsular opacification(PCO) of the human crystalline lens.METHODS: Human lens epithelial cells(HLECs; line SRA01/04) was exposed to transf... AIM: To study the potential role of fasudil as a treatment for posterior capsular opacification(PCO) of the human crystalline lens.METHODS: Human lens epithelial cells(HLECs; line SRA01/04) was exposed to transforming growth factor-β2(TGF-β2) to induce the process of epithelial-mesenchymal transition(EMT). Fasudil was applied to the cell samples. Its effect on overall HLECs proliferation and migration was studied, as was its influence on EMT induction by TGF-β2 using cell migration assay, MTT colorimetric assay and Western blot assay.RESULTS: Fasudil inhibited the proliferation of SRA01/04. Its effect was time-and concentration-dependent. The migration of SRA01/04 cells was significantly reduced 24-72 h after fasudil treatment, and the half maximal inhibitory concentration(IC50) was 22.37 μmol/mL at 72 h. Reversal of the elongated, fibroblast-like shape changes induced by TGF-β2 in SRA01/04 cells was observed. Fasudil up-regulated the expression of Connexin43 protein and down-regulated the expression of α-SMA protein compared with the cells treated with TGF-β2. Furthermore, when exposed to fasudil, the phosphorylation of Rhoassociated protein kinase(Rock) and myosin light chain(MLC) could not be activated in the cell preparations.CONCLUSION: Fasudil suppresses the proliferation and migration of SRA01/04 cells, and inhibits the process of EMT induced by TGF-β2. These results suggest that fasudil may serve as a therapeutic agent for PCO. 展开更多
关键词 FASUDIL human lens epithelial cells TGF-Β2 Rho/Rock epithelial-mesenchymal transition
下载PDF
Epithelial-mesenchymal transition transcription factors and mi RNAs: “Plastic surgeons” of breast cancer 被引量:7
3
作者 Caroline Moyret-Lalle Emmanuelle Ruiz Alain Puisieux 《World Journal of Clinical Oncology》 CAS 2014年第3期311-322,共12页
Growing evidence suggests that breast cancer cell plasticity arises due to a partial reactivation of epithelialmesenchymal transition(EMT) programs in order to give cells pluripotency, leading to a stemness-like pheno... Growing evidence suggests that breast cancer cell plasticity arises due to a partial reactivation of epithelialmesenchymal transition(EMT) programs in order to give cells pluripotency, leading to a stemness-like phenotype. A complete EMT would be a dead end program that would render cells unable to fully metastasize to distant organs. Evoking the EMT-mesenchymal-toepithelial transition(MET) cascade promotes successful colonization of distal target tissues. It is unlikely that direct reprogramming or trans-differentiation without passing through a pluripotent stage would be thepreferred mechanism during tumor progression. This review focuses on key EMT transcriptional regulators, EMT-transcription factors involved in EMT(TFs) and the mi RNA pathway, which are deregulated in breast cancer, and discusses their implications in cancer cell plasticity. Cross-regulation between EMT-TFs and mi RNAs, where mi RNAs act as co-repressors or co-activators, appears to be a pivotal mechanism for breast cancer cells to acquire a stem cell-like state, which is implicated both in breast metastases and tumor recurrence. As a master regulator of mi RNA biogenesis, the ribonuclease type Ⅲ endonuclease Dicer plays a central role in EMTTFs/mi RNAs regulating networks. All these EMT-MET key regulators represent valuable new prognostic and predictive markers for breast cancer as well as promising new targets for drug-resistant breast cancers. 展开更多
关键词 EMBRYONIC transcription factors epithelial to MESENCHYMAL transition Breast cancer MicroRNAs DICER Feedback loop
下载PDF
Roles of Rho/Rock Signaling Pathway in Silica-induced Epithelial-mesenchymal Transition in Human Bronchial Epithelial Cells 被引量:3
4
作者 HU Yong Bin LI Xiang +3 位作者 LIANG Guan Nan DENG Zheng Hao JIANG Hai Ying ZHOU Jian Hua 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2013年第7期571-576,共6页
Objective To investigate the roles of Rho/Rock signaling pathway in silica-induced Epithelial-mesenchymal transition (EMT) in human bronchial epithelial cells (BEC) in vitro. Methods Human BEC were incubated with ... Objective To investigate the roles of Rho/Rock signaling pathway in silica-induced Epithelial-mesenchymal transition (EMT) in human bronchial epithelial cells (BEC) in vitro. Methods Human BEC were incubated with silica with various concentrations for indicated times. Cell viability was assayed by MTT test. Morphologic Changes were observed by microscope. Mesenchymal marker a-smooth muscle actin (a-SMA), vimentin (Vim), and epithelial marker E-cadherin (E-cad) were analyzed by Western Blot. The pull-down assay was used to measure Rho activity. In the prevention experiments, the specific inhibitor for Rho effector ROCK (Y27632) was used to inhibit the activity of Rho. Results Human BEC stimulated with silica were converted from a "cobblestone" epithelial structure into an elongated fibroblast-like shape structure. Incubation of human BEC with silica induced de novo expression of a-SMA and Vim, and loss of E-cad. Also, silica treatment resulted in Rho activation in human BEC. Y27632 up-regulated the E-cad expression but attenuated a-SMA and Vim expression in silica-stimulated cells. Conclusion The activation of Rho/ROCK signaling pathways is most likely involved in Silica-induced EMT in human bronchial epithelial cells. 展开更多
关键词 SILICA Bronchial epithelial cell epithelial-to-mesenchymal transition RHO
下载PDF
Role of epithelial-mesenchymal transition in gastric cancer initiation and progression 被引量:28
5
作者 Zhao Peng Chen-Xiao Wang +2 位作者 Er-Hu Fang Guo-Bin Wang Qiang Tong 《World Journal of Gastroenterology》 SCIE CAS 2014年第18期5403-5410,共8页
Gastric cancer is one of the most common malignant tumors worldwide.Due to its intricate initiation and progression mechanisms,early detection and effective treatment of gastric cancer are difficult to achieve.The epi... Gastric cancer is one of the most common malignant tumors worldwide.Due to its intricate initiation and progression mechanisms,early detection and effective treatment of gastric cancer are difficult to achieve.The epithelial-mesenchymal transition(EMT)is characterized as a fundamental process that is critical for embryonic development,wound healing and fibrotic disease.Recent evidence has established that aberrant EMT activation in the human stomach is closely associated with gastric carcinogenesis and tumor progression.EMT activation endows gastric epithelial cells with increased characteristics of mesenchymal cells and reduces their epithelial features.Moreover,mesenchymal cells tend to dedifferentiate and acquire stem cell or tumorigenic phenotypes such as invasion,metastasis and apoptosis resistance as well as drug resistance during EMT progression.There are a number of molecules that indicate the stage of EMT(e.g.,E-cadherin,an epithelial cell biomarker);therefore,certain transcriptional proteins,especially E-cadherin transcriptional repressors,may participate in the regulation of EMT.In addition,EMT regulation may be associated with certain epigenetic mechanisms.The aforementioned molecules can be used as early diagnostic markers for gastric cancer,and EMT regulation can provide potential targets for gastric cancer therapy.Here,we review the role of these aspects of EMT in gastric cancer initiation and development. 展开更多
关键词 epithelial-mesenchymal transition Gastric cancer TUMORIGENESIS Tumor progression Cancer stem cells
下载PDF
Effects of epidermal growth factor on transforming growth factor-beta1-induced epithelial-mesenchymal transition and potential mechanism in human corneal epithelial cells 被引量:2
6
作者 Shu-Yang Chen Chen Xie +1 位作者 Hong Zhu Ye Shen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2020年第1期11-20,共10页
AIM: To evaluate the effects of epidermal growth factor(EGF) on transforming growth factor-beta1(TGF-β1)-induced epithelial-mesenchymal transition(EMT) in human corneal epithelial cells(HCECs). METHODS: HCECs were cu... AIM: To evaluate the effects of epidermal growth factor(EGF) on transforming growth factor-beta1(TGF-β1)-induced epithelial-mesenchymal transition(EMT) in human corneal epithelial cells(HCECs). METHODS: HCECs were cultured and treated with TGF-β1 for establishing the model of EMT in vitro. Biological effect of EGF on TGF-β1-induced EMT was evaluated. Proteins and m RNAs expression changes of E-cadherin, N-cadherin and Fibronectin(EMT-relative markers) after TGF-β1 or TGF-β1 combined EGF treatment were detected by Western blot and RT-PCR, respectively. Viability and migration of HCECs were measured by CCK-8, transwell cell migration assay and cell scratch wound healing assay. Activation of Smad2, ERK, p38, JNK and Akt signaling pathways were evaluated by Western blot. Inhibitors of relevant signaling pathways were added to the HCECs to explore the key signal mechanism.RESULTS: With treatment of TGF-β1 only, three EMTrelative proteins and m RNA expression showed that EMT up-regulated in a concentration-dependent and time-dependent manner, with significantly decreasing cell viability(TGF-β1≥5 ng/m L, P<0.05) and increasing cell migration(TGF-β1≥5 ng/m L, P<0.01). The phosphorylation of Smad2 and p38 was a key process of TGF-β1-induced EMT. Meanwhile, EMT-relative proteins and m RNA expression showed that EGF inhibited TGF-β1-indued EMT, with significantly increasing cell viability(EGF≥10 ng/m L, P<0.01). It was noteworthy that EGF significantly enhanced cell migration although EMT was inhibited(EGF≥10 ng/m L, P<0.01), and the blockage of p38(by SB202190, a p38 inhibitor) was a potential mechanism of this phenomenon. CONCLUSION: EGF inhibits TGF-β1-induced EMT via suppressive p38, and promotes cells proliferation and migration in a non-EMT process by inhibiting p38 pathway. 展开更多
关键词 epidermal growth factor P38 epithelialmesenchymal transition corneal epithelial cell
下载PDF
Epithelial-mesenchymal transition in breast cancer progression and metastasis 被引量:35
7
作者 Yifan Wang Binhua P. Zhou 《Chinese Journal of Cancer》 SCIE CAS CSCD 北大核心 2011年第9期603-611,共9页
Breast cancer is the most common cancer in women,and approximately 90% of breast cancer deaths are caused by local invasion and distant metastasis of tumor cells.Epithelial-mesenchymal transition(EMT) is a vital proce... Breast cancer is the most common cancer in women,and approximately 90% of breast cancer deaths are caused by local invasion and distant metastasis of tumor cells.Epithelial-mesenchymal transition(EMT) is a vital process for large-scale cell movement during morphogenesis at the time of embryonic development.Tumor cells usurp this developmental program to execute the multi-step process of tumorigenesis and metastasis.Several transcription factors and signals are involved in these events.In this review,we summarize recent advances in breast cancer researches that have provided new insights in the molecular mechanisms underlying EMT regulation during breast cancer progression and metastasis.We especially focus on the molecular pathways that control EMT. 展开更多
关键词 乳腺癌 上皮 间质 肿瘤细胞 分子机制 EMT 胚胎发育 细胞运动
下载PDF
Attenuated LKB1-SIK1 signaling promotes epithelial-mesenchymal transition and radioresistance of non–small cell lung cancer cells 被引量:16
8
作者 Yuan-Hu Yao Yan Cui +4 位作者 Xiang-Nan Qiu Long-Zhen Zhang Wei Zhang Hao Li Jin-Ming Yu 《Chinese Journal of Cancer》 SCIE CAS CSCD 2016年第10期500-508,共9页
Background: Radiotherapy is one of the main therapeutic approaches for non–small cell lung cancer(NSCLC). However, radioresistant cancer cells can eventually cause tumor relapse and even fatal metastasis. It is thoug... Background: Radiotherapy is one of the main therapeutic approaches for non–small cell lung cancer(NSCLC). However, radioresistant cancer cells can eventually cause tumor relapse and even fatal metastasis. It is thought that radioresistance and metastasis could be potentially linked by epithelial?mesenchymal transition(EMT). In this study, we established radioresistant NSCLC cells to investigate the potential relationship among radioresistance, EMT, and enhanced metastatic potential and the underlying mechanism involving liver kinase B1(LKB1)?Salt?inducible kinase 1(SIK1) signaling.Methods: The radioresistant cell lines A549 R and H1299 R were generated by dose?gradient irradiation of the paren?tal A549 and H1299 cells. The radioresistance/sensitivity was evaluated by Cell Counting Kit?8 assay, apoptosis analysis, and/or clonogenic cell survival assay. The EMT phenotype and the signaling change were assessed by Western blot?ting. The abilities of invasion and migration were evaluated by transwell assays and wound healing assays.Results: The radioresistant cell lines A549 R and H1299 R displayed mesenchymal features with enhanced invasion and migration. Mechanistically, A549 R and H1299 R cells had attenuated LKB1?SIK1 signaling, which leaded to the up?regulation of Zinc?finger E?box?binding homeobox factor 1(ZEB1)—a transcription factor that drives EMT. Re?expression of LKB1 in A549 R cells reversed the EMT phenotype, whereas knockdown of LKB1 in H1299 R cells further promoted the EMT phenotype. Moreover, re?expression of LKB1 in A549 cells increased the radiosensitivity, whereas knockdown of LKB1 in H1299 cells decreased the radiosensitivity.Conclusions: Our findings suggest that attenuated LKB1?SIK1 signaling promotes EMT and radioresistance of NSCLC cells, which subsequently contributes to the enhanced metastatic potential. Targeting the LKB1?SIK1?ZEB1 pathway to suppress EMT might provide therapeutic benefits. 展开更多
关键词 放射敏感性 肺癌细胞 信号 间质 转化 上皮 减毒 非小细胞肺癌
下载PDF
Systematic review of the old and new concepts in the epithelial-mesenchymal transition of colorectal cancer 被引量:11
9
作者 Simona Gurzu Camelia Silveanu +3 位作者 Annamaria Fetyko Vlad Butiurca Zsolt Kovacs Ioan Jung 《World Journal of Gastroenterology》 SCIE CAS 2016年第30期6764-6775,共12页
Epithelial-to-mesenchymal transition(EMT) is defined as the transformation of an epithelial cell into a spindle cell with the loss of membrane E-cadherin expression and the gain of mesenchymal markers positivity. In t... Epithelial-to-mesenchymal transition(EMT) is defined as the transformation of an epithelial cell into a spindle cell with the loss of membrane E-cadherin expression and the gain of mesenchymal markers positivity. In the field of colorectal cancer(CRC), first data about EMT was published in 1995 and more than 400 papers had been written up to March 2016. Most of them are focused on the molecular pathways and experimentally-proved chemoresistance. In the present article, an update in the field of EMT in CRC based on the review of the literature and personal experience of the authors is presented. The information about the molecular and immunohistochemical(IHC) particularities of these processes and their possible role in the prognosis of CRC were also up-dated. This article focuses on the IHC quantification of the EMT, the immunoprofile of tumor buds and on the relation between EMT, angiogenesis, and stem cells activation. The EMT-induced chemoresistance vs chemotherapyor radiotherapy-induced EMT and cellular senescence was also synthesized for both conventional and targeted therapy. As a future perspective, the EMTangiogenesis-stemness link could be used as a possible valuable parameter for clinical follow-up and targeted therapeutic oncologic management of patients with CRC. Association of dexamethasone and angiotensin converting enzyme inhibitors combined with conventional chemotherapies could have clinical benefits in patients with CRC. The main conclusion is that, although many studies have been published, the EMT features are still incompletely elucidated and newly discovered EMT markers provide confusing data in understanding this complicated process, which might have significant clinical impact. 展开更多
关键词 ANGIOGENESIS COLORECTAL cancer BUDDING epithelial-mesenchymal transition CHEMORESISTANCE
下载PDF
Evaluation of epithelial-mesenchymal transitioned circulating tumor cells in patients with resectable gastric cancer: Relevance to therapy response 被引量:29
10
作者 Ting-Ting Li Hao Liu +6 位作者 Feng-Ping Li Yan-Feng Hu Ting-Yu Mou Tian Lin Jiang Yu Lei Zheng Guo-Xin Li 《World Journal of Gastroenterology》 SCIE CAS 2015年第47期13259-13267,共9页
AIM: To evaluate the epithelial-to-mesenchymal transition(EMT) of circulating tumor cells(CTCs) in gastric cancer patients.METHODS: We detected tumor cells for expression of four epithelial(E^+) transcripts(keratins 8... AIM: To evaluate the epithelial-to-mesenchymal transition(EMT) of circulating tumor cells(CTCs) in gastric cancer patients.METHODS: We detected tumor cells for expression of four epithelial(E^+) transcripts(keratins 8, 18, and 19 and epithelial cell adhesion molecule) and two mesenchymal(M^+) transcripts(Vimentin and Twist) by a quantifiable, dual-colorimetric RNA-in situ hybridization assay. Between July 2014 and October 2014, 44 patients with gastric cancer were recruited for CTC evaluation. Blood samples were obtained from selected patients during the treatment course [before surgery, after surgery and at the 6^(th) cycle of XELOX based chemotherapy(about 6 mo postoperatively)].RESULTS: We found the EMT phenomenon in which there were a few biphenotypic E^+/M^+ cells in primary human gastric cancer specimens. Of the 44 patients, the presence of CTCs was reported in 35(79.5%) patients at baseline. Five types of cells including from exclusively E^+ CTCs to intermediate CTCs and exclusively M^+ CTCs were identified(4 patients with M^+ CTCs and 10 patients with M^+ or M^+ > E^+ CTCs). Further, a chemotherapy patient having progressive disease showed a proportional increase of mesenchymal CTCs in the post-treatment blood specimens. We used NCI-N87 cells to analyze the linearity and sensitivity of Can Patrol^(TM) system and the correlation coefficient(R^2) was 0.999.CONCLUSION: The findings suggest that the EMT phenomenon was both in a few cells of primary tumors and abundantly in CTCs from the blood of gastric cancer patients, which might be used to monitor therapy response. 展开更多
关键词 GASTRIC cancer epithelial-to-mesenchymaltransition CIRCULATING tumor cells CHEMOTHERAPY Therapy response
下载PDF
Epithelial-mesenchymal transition- activating transcription factors- multifunctional regulators in cancer 被引量:27
11
作者 Minal Garg 《World Journal of Stem Cells》 SCIE CAS 2013年第4期188-195,共8页
The process of epithelial to mesenchymal transition(EMT), first noted during embryogenesis, has also been reported in tumor formation and leads to the development of metastatic growth. It is a naturally occurring proc... The process of epithelial to mesenchymal transition(EMT), first noted during embryogenesis, has also been reported in tumor formation and leads to the development of metastatic growth. It is a naturally occurring process that drives the transformation of adhesive,non-mobile epithelial like cells into mobile cells with a mesenchymal phenotype that have ability to migrate to distant anatomical sites. Activating complex network of embryonic signaling pathways, including Wnt, Notch,hedgehog and transforming growth factor-β pathways,lead to the upregulation of EMT activating transcription factors, crucial for normal tissue development and maintenance. However, deregulation of tightly regulated pathways affecting the process of EMT has been recently investigated in various human cancers. Given the critical role of EMT in metastatic tumor formation,better understanding of the mechanistic regulation provides new opportunities for the development of potential therapeutic targets of clinical importance. 展开更多
关键词 epithelial-to-mesenchymal transition METASTATIC growth EMBRYONIC signaling pathways Transcription factors CANCER
下载PDF
Expression of transcription factors Slug in the lens epithelial cells undergoing epithelial-mesenchymal transition induced by connective tissue growth factor 被引量:1
12
作者 Ying-Na Wang Li Qin +2 位作者 Jing-Ming Li Li Chen Cheng Pei 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第5期872-876,共5页
AIMTo investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF).METHODSHLECs w... AIMTo investigate the expression of transcription factors Slug in human lens epithelial cells (HLECs) undergoing epithelial-mesenchymal transition (EMT) induced by connective tissue growth factor (CTGF).METHODSHLECs were treated with CTGF of different concentrations (20, 50 and 100 ng/mL) or without CTGF (control) for 24h. The morphological changes of HLECs were analysed by microscopy. The expression and cellular localization of Slug was evaluated by immumo-fluorescence. Expressions of Slug, E-cadherin and alpha smooth muscle actin (&#x003b1;-SMA) were further determined by Western blot analysis.RESULTSHLECs showed spidle fibrolasts-like characteristics and loosely connected each other after CTGF treatment. The immuno-fluorescence staining indicated that Slug was localized in the nuclei and its expression was induced by CTGF. The relative expressions of Slug protein were 1.64&#x000b1;0.11, 1.96 &#x000b1;0.03, 3.12 &#x000b1;0.10, and 4.08&#x000b1;0.14, respectively, in response to control group and treatment with CTGF of 20, 50 and 100 ng/mL (F=443.86, P&#x0003c;0.01). The increased Slug protein levels were correlated well with up-expression of &#x003b1;-SMA (0.78&#x000b1;0.05, 0.85&#x000b1;0.06, 2.17&#x000b1;0.15, 2.86&#x000b1;0.10; F=449.85, P&#x0003c;0.01) and down-expression of E-cadherin (2.50&#x000b1;0.11, 1.79&#x000b1;0.26, 1.05&#x000b1;0.14, 0.63&#x000b1;0.08; F=101.55, P&#x0003c;0.01).CONCLUSIONTranscription factor Slug may be involved in EMT of HLECs induced by CTGF in vitro. 展开更多
关键词 transcription factors Slug human lens epithelial cells connective tissue growth factor epithelial-mesenchymal transition alpha smooth muscle actin adhesion molecules E-cadherin
下载PDF
Mechanisms of fibrogenesis in liver cirrhosis:The molecular aspects of epithelial-mesenchymal transition 被引量:18
13
作者 Sun-Jae Lee Kyung-Hyun Kim Kwan-Kyu Park 《World Journal of Hepatology》 CAS 2014年第4期207-216,共10页
Liver injuries are repaired by fibrosis and regeneration.The cause of fibrosis and diminished regeneration,especially in liver cirrhosis,is still unknown.Epithelialmesenchymal transition(EMT) has been found to be asso... Liver injuries are repaired by fibrosis and regeneration.The cause of fibrosis and diminished regeneration,especially in liver cirrhosis,is still unknown.Epithelialmesenchymal transition(EMT) has been found to be associated with liver fibrosis.The possibility that EMT could contribute to hepatic fibrogenesis reinforced the concept that activated hepatic stellate cells are not the only key players in the hepatic fibrogenic process and that other cell types,either hepatic or bone marrow-derived cells could contribute to this process.Following an initial enthusiasm for the discovery of this novel pathway in fibrogenesis,more recent research has started to cast serious doubts upon the real relevance of this phenomenon in human fibrogenetic disorders.The debate on the authenticity of EMT or on its contribution to the fibrogenic process has become very animated.The overall result is a general confusion on the meaning and on the definition of several key aspects.The aim of this article is to describe how EMT participates to hepatic fibrosis and discuss the evidence of supporting this possibility in order to reach reasonable and useful conclusions. 展开更多
关键词 epithelial-mesenchymal transition Liver Fibrosis TRANSFORMING growth factor-beta1 Biological markers
下载PDF
Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer 被引量:7
14
作者 Hui-Ying Ma Xin-Zhou Liu Chun-Min Liang 《World Journal of Gastroenterology》 SCIE CAS 2016年第29期6619-6628,共10页
Gastric cancer(GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori(H. pylori). Infection with H. pylori leads to an active inflammatory microenviro... Gastric cancer(GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori(H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition(EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT. 展开更多
关键词 GASTRIC cancer Inflammation epithelialmesenchymal transition MICROENVIRONMENT IMMUNE cells
下载PDF
Transcriptional Factor Snail Mediates Epithelial-Mesenchymal Transition in Human Bronchial Epithelial Cells Induced by Silica 被引量:2
15
作者 HU Yong Bin LI Fei Feng +1 位作者 DENG Zheng Hao PAN Pin Hua 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第7期544-548,共5页
Epithelial-mesenchymal transition (EMT) plays an important role in fibrotic diseases. We have previously showed that silica induces EMT in human bronchial epithelial cells (BECs); however, the underlying mechanism... Epithelial-mesenchymal transition (EMT) plays an important role in fibrotic diseases. We have previously showed that silica induces EMT in human bronchial epithelial cells (BECs); however, the underlying mechanism of silica-induced EMT is poorly understood. In the present study, we investigated the role of Snail in silica-induced EMT in human BECs in vitro. Human BECs were treated with silica at various concentrations and incubation times. Then MTr assay, western blot, electrophoretic mobility shift assay (EMSA), and small interfering RNA (siRNA) transfection were performed. We found that silica increased the expression and DNA binding activity of Snail in human BECs. SNAI silica-induced expression siRNA upregulated the siRNA inhibited the of Snail. Moreover, SNAI expression of epithelial marker E-cadherin, but attenuated the expression of mesenchymal marker a-smooth muscle actin and vimentin in silica-stimulated cells. These results suggest that Snail mediates the silica-induced EMT in human BECs. 展开更多
关键词 Transcriptional Factor Snail Mediates epithelial-mesenchymal transition in Human Bronchial epithelial Cells Induced by Silica EMT FIGURE RNA
下载PDF
EDIL3 depletion suppress epithelial-mesenchymal transition of lens epithelial cells via transforming growth factor β pathway 被引量:3
16
作者 Rui Zhang You-Heng Wei +7 位作者 Chun-Yan Zhao Hong-Yuan Song Ni Shen Xiao Cui Xin Gao Zhong-Tian Qi Ming Zhong Wei Shen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第1期18-24,共7页
AIM: To study the effect of discoidin I-like domaincontaining protein 3(EDIL3) depletion on the proliferation and epithelial-mesenchymal transition(EMT) in human lens epithelial cells(LECs). METHODS: RNA inter... AIM: To study the effect of discoidin I-like domaincontaining protein 3(EDIL3) depletion on the proliferation and epithelial-mesenchymal transition(EMT) in human lens epithelial cells(LECs). METHODS: RNA interference was used to inhibit the expression of EDIL3 in human LECs in vitro. The morphology of cells was observed using an inverted microscope. Cell proliferation was assessed using Ed U kit. Cell migration was investigated using Transwell chamber and EMT of LECs was assessed using confocal microscope and Western blotting. The transforming growth factor β(TGFβ) pathway was investigated using Western blotting. RESULTS: The data showed that silencing EDIL3 expression changed LECs morphology and suppressed LECs proliferation(P〈0.05) and migration(P〈0.01). Furthermore, the result of Western blotting showed that EDIL3 depletion reduced the expression of α-smooth muscle actin(α-SMA)(P〈0.001) and vimentin(P〈0.01), while increased the expression of E-cadherin(P〈0.001). EDIL3 depletion could suppress the phosphorylation of Smad2(P〈0.01) and Smad3(P〈0.01) and the activation of exracellular signal regulated kinase(ERK)(P〈0.05). CONCLUSION: The findings indicate that EDIL3 might participate in the proliferation and EMT in LECs via TGFβ pathway and may be a potential therapeutic target for the treatment of posterior capsule opacification. 展开更多
关键词 discoidin I-like domain-containing protein 3 transforming growth factor β epithelial-mesenchymal transition human lens epithelial cells
下载PDF
KAI1 reverses the epithelial-mesenchymal transition in human pancreatic cancer cells 被引量:4
17
作者 Xu Liu Xiao-Zhong Guo +1 位作者 Hong-Yu Li Jiang Chen 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2019年第5期471-477,共7页
Background: Epithelial-mesenchymal transition (EMT) plays an important role in pancreatic cancer (PC). In the present study, we investigated the effects of KAI1 gene overexpression on the EMT of human PC cell lines, M... Background: Epithelial-mesenchymal transition (EMT) plays an important role in pancreatic cancer (PC). In the present study, we investigated the effects of KAI1 gene overexpression on the EMT of human PC cell lines, MIA PaCa-2 and PACN-1. Methods: Plasmids overexpressing KAI1 and pCMV were transfected into MIA PaCa-2 and PACN-1 cells, respectively. After selection of differently transfected cells by G418, KAI1 protein levels were examined by Western blotting, and transfected cells were renamed as MIA PaCa-2-K, MIA PaCa-2-p, PACN-1-K and PACN-1-p. Wound healing and Transwell migration assays were then performed comparing the two groups of cells. EMT-related markers were analyzed by Western blotting. Results: The percentage of wound closure significantly decreased in MIA PaCa-2-K cells compared with MIA PaCa-2-p and MIA PaCa-2 cells after 24, 48 and 72 h ( P < 0.05). In PACN-1-K cells, the percentage of wound closure significantly decreased as well ( P < 0.05). Numbers of invading MIA PaCa-2, MIA PaCa-2-p and MIA PaCa-2-K cells were determined as 48.0 ±15.4, 50.0 ±12.4, and 12.0 ±3.8, respectively. The corresponding numbers of invading PACN-1, PACN-1-p and PACN-1-K cells were 29.0 ±10.6, 31.0 ±11.4, and 8.0 ±4.2, respectively. KAI1 overexpression induced a significant upregulation of E-cadherin and also significant downregulation of Snail, vimentin, matrix metalloproteinase 2 (MMP2) and MMP9 (all P < 0.05) in PC cells. Conclusions: KAI1 reversed EMT-related marker expression and inhibited migration and invasion of PC cells. Thus, KAI1 might represent a novel potential therapeutic target for PC. 展开更多
关键词 KAI1 epithelial-mesenchymal transition PANCREATIC CANCER
下载PDF
Cross-talk between microRNA-let7c and transforming growth factor-β2 during epithelial-to-mesenchymal transition of retinal pigment epithelial cells 被引量:2
18
作者 Qu-Zhen Deji Feng Yan +3 位作者 Wang-Dui Zhaba Ya-Jun Liu Jie Yin Zhen-Ping Huang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2020年第5期693-700,共8页
AIM: To explore the roles of microRNA-let7 c(miR-let7 c) and transforming growth factor-β2(TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition(EMT) of retinal pigment epithelial cells. METHODS... AIM: To explore the roles of microRNA-let7 c(miR-let7 c) and transforming growth factor-β2(TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition(EMT) of retinal pigment epithelial cells. METHODS: Retinal pigment epithelial(ARPE-19) cells were cultured with no serum for 12 h, and then with recombinant human TGF-β2 for different lengths of time. ARPE-19 cells were transfected with 1×106 TU/mL miR-let7 c mimcs(miR-let7 cM), miR-let7 c mimcs negative control(miR-let7cMNC) and miR-let7 c inhibitor(miR-let7 cI) using the transfection reagent. The expression of keratin-18, vimentin, N-cadherin, IKB alpha, p65 were detected by Western blot, quantitative polymerase chain reaction and immunofluorescence. RESULTS: The expression of miR-let7c was dramatically reduced and the nuclear factor-kappa B(NF-κB) signaling pathway was activated after induction by TGF-β2(P<0.05). In turn, overexpressed miR-let7 c significantly inhibited TGF-β2-induced EMT(P<0.05). However, miR-let7 c was unable to inhibit TGF-β2-induced EMT when the NF-κB signaling pathway was inhibited by BAY11-7082(P<0.01). CONCLUSION: The miR-let7 c regulates TGF-β2-induced EMT through the NF-κB signaling pathway in ARPE-19 cells. 展开更多
关键词 microRNA-let7c transforming growth factor-β2 epithelial-to-mesenchymal transition human retinal pigment epithelial cells nuclear factor-kappa B pathway
下载PDF
GSK3β inhibits epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/Akt pathways 被引量:16
19
作者 Cheng Zhang Li Su +1 位作者 Li Huang Zheng-Yu Song 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第7期1120-1128,共9页
AIM: To investigate the regulatory mechanism of glycogen synthase kinase 3β(GSK3β) in epithelialmesenchymal transition(EMT) process after proliferative vitreoretinopathy(PVR) induction. METHODS: Experimenta... AIM: To investigate the regulatory mechanism of glycogen synthase kinase 3β(GSK3β) in epithelialmesenchymal transition(EMT) process after proliferative vitreoretinopathy(PVR) induction. METHODS: Experimental PVR was induced by intravitreal injection of retinal pigment epithelium(RPE) cells in the eyes of rabbits. A PI3 K/Akt inhibitor(wortmannin) and a GSK3β inhibitor(Li Cl) were also injected at different time during PVR progress. Electroretinogram(ERG), ocular fundus photographs, and B-scan ultrasonography were used to observe the PVR progress. Western blot test on the extracted retina were performed at 1, 2, 4 wk. The expression of the mesenchymal marker vimentin was determined by immunohistochemistry. Toxicity of wortmannin and Li Cl were evaluated by ERG and Td Tmediated d UTP nick-end labeling(TUNEL) assay. The vitreous was also collected for metabolomic analysis. RESULTS: Experimental PVR could significantly lead to EMT, along with the suppressed expression of GSK3β and the activation of Wnt/β-catenin and PI3 K/Akt pathways. It was verified that upregulating the expression of GSK3β could effectively inhibit EMT process by suppressing Wnt/β-catenin and PI3 K/Akt pathways. CONCLUSION: GSK3β effectively inhibits EMT via the Wnt/β-catenin and PI3 K/Akt pathways. GSK3β may be regarded as a promising target of experimental PVR inhibition. 展开更多
关键词 epithelial-mesenchymal transition experimental proliferative vitreoretinopathy glycogen synthase kinase RABBITS
下载PDF
Integrin-linked kinase overexpression promotes epithelial-mesenchymal transition via nuclear factor-κB signaling in colorectal cancer cells 被引量:7
20
作者 Hong Shen Jun-Li Ma +6 位作者 Yan Zhang Gan-Lu Deng Yan-Ling Qu Xiao-Ling Wu Jing-Xuan He Sai Zhang Shan Zeng 《World Journal of Gastroenterology》 SCIE CAS 2016年第15期3969-3977,共9页
AIM: To investigate the effect of integrin-linked kinase (ILK) on proliferation, metastasis, and invasion of the colorectal cancer cell line SW480.METHODS: In this study, the colorectal cancer cell line SW480 was stab... AIM: To investigate the effect of integrin-linked kinase (ILK) on proliferation, metastasis, and invasion of the colorectal cancer cell line SW480.METHODS: In this study, the colorectal cancer cell line SW480 was stably transfected with ILK plasmids, and small interfering RNA (siRNA) was used to knockdown expression of nuclear factor (NF)-&#x003ba;B/p65. Methylthiazole tetrazolium (MTT) assay was performed to measure proliferation, and the wound healing migration assay and matrigel invasion assay were used to test the metastasis and invasion ability of SW480 cells. To explore the epithelial-mesenchymal transition (EMT) process, embryonic development, and the invasion and metastasis of tumors, the protein level of E-cadherin, vimentin, snail, and slug was detected by western blot. Immunofluorescence was also used to detect E-cadherin expression. Western blot was used to determine the level of phosphorylated-inhibitor of kappa B (I&#x003ba;B)a, inhibitor of gamma B (I&#x003b3;B)a, and nuclear factor kappa B (NF-&#x003ba;B) expressions and to explore the ILK signaling pathway.RESULTS: Western blot results revealed that ILK expression significantly increased when ILK was overexpressed in SW480 cells (P &#x0003c; 0.05). Proliferation, metastasis, and invasion ability were improved in the vector-ILK group compared to the vector group (P &#x0003c; 0.05). Immunofluorescence results revealed that E-cadherin fluorescence intensity decreased after ILK was overexpressed (P &#x0003c; 0.05). Western blot results revealed that the protein expression of E-cadherin was reduced, while vimentin, snail, and slug were upregulated when ILK was overexpressed in SW480 cells (P &#x0003c; 0.05). In order to determine the role of the NF-&#x003ba;B signaling pathway in ILK overexpression promoted EMT occurrence, we overexpressed ILK in SW480 cells and found that levels of NF-&#x003ba;B/p65 and cytoplasmic phosphorylated-I&#x003ba;Ba were increased and that cytoplasmic I&#x0043a;Ba levels were decreased compared to the control group (P &#x0003c; 0.05). Furthermore, NF-&#x003ba;B/p65 knockout revealed that E-cadherin was increased in the overexpressed ILK group.CONCLUSION: ILK overexpression improved the proliferation, metastasis, and invasion ability of SW480 cells, and this effect may be mediated by the NF-&#x003ba;B signaling pathway. 展开更多
关键词 Colorectal cancer Integrin-linked kinase epithelial-mesenchymal transition Nuclear factor-κ B OVEREXPRESSION
下载PDF
上一页 1 2 236 下一页 到第
使用帮助 返回顶部