Polyphenols,including phenolic acids,flavonoids,and procyanidins,are abundant in food and beverage derived from plants.Tea(Camellia sinensis)is particularly rich in polyphenols(e.g.,catechins,theaflavins,thearubigins,...Polyphenols,including phenolic acids,flavonoids,and procyanidins,are abundant in food and beverage derived from plants.Tea(Camellia sinensis)is particularly rich in polyphenols(e.g.,catechins,theaflavins,thearubigins,gallic acid,and flavonols),which are thought to contribute to the health benefits of tea.High intake of tea polyphenols has been described to prevent and/or attenuate a variety of chronic pathological conditions like cardiovascular diseases,neurodegenerative diseases,diabetes,and cancer.This review focuses on established antioxidant and anti-inflammatory properties of tea polyphenols and underlying mechanisms of their involvement in inflammatory bowel diseases(IBD).Tea polyphenols act as efficient antioxidants by inducing an endogenous antioxidant defense system and maintaining intracellular redox homeostasis.Tea polyphenols also regulate signaling pathways such as nuclear factor-κB,activator protein 1,signal transducer and activator of transcriptions,and nuclear factor E2-related factor 2,which are associated with IBD development.Accumulating pieces of evidence have indicated that tea polyphenols enhance epithelial barrier function and improve gut microbial dysbiosis,contributing to the management of inflammatory colitis.Therefore,this study suggests that supplementation of tea polyphenols could prevent inflammatory conditions and improve the outcome of patients with IBD.展开更多
Recently, the increasing number of patients worldwide who are sensitive to dietary gluten without evidence of celiac disease or wheat allergy has contributed to the identification of a new gluten-related syndrome defi...Recently, the increasing number of patients worldwide who are sensitive to dietary gluten without evidence of celiac disease or wheat allergy has contributed to the identification of a new gluten-related syndrome defined as non-celiac gluten sensitivity. Our knowledge regarding this syndrome is still lacking, and many aspects of this syndrome remain unknown. Its pathogenesis is heterogeneous, with a recognized pivotal role for innate immunity; many other factors also contribute, inctuding tow-grade intestinal inflammation, increased intestinal barrier function and changes in the intestinal microbiota. Gluten and other wheat proteins, such as amylase trypsin inhibitors, are the primary triggers of this syndrome, but it has also been hypothesized that a diet rich in fermentable monosaccharides and polyols may elicit its functional gastrointestinal symptoms. The epidemiology of this condition is far from established; its prevalence in the general population is highly variable, ranging from 0.63% to 6%. From a clinical point of view, non-celiac gluten sensitivity is characterized by a wide array of gastrointestinal and extraintestinal symptoms that occur shortly after the ingestion of gluten and improve or disappear when gluten is withdrawn from the diet. These symptoms recur when gluten is reintroduced. Because diagnostic biomarkers have not yet been identified, a double-blind placebo-controlled gluten challenge is currently the diagnostic method with the highest accuracy. Future research is needed to generate more knowledge regarding non-celiac gluten sensitivity, a condition that has global acceptance but has only a few certainties and many unresolved issues.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2020R1F1A1073595 and 2021R1A2C2006745)。
文摘Polyphenols,including phenolic acids,flavonoids,and procyanidins,are abundant in food and beverage derived from plants.Tea(Camellia sinensis)is particularly rich in polyphenols(e.g.,catechins,theaflavins,thearubigins,gallic acid,and flavonols),which are thought to contribute to the health benefits of tea.High intake of tea polyphenols has been described to prevent and/or attenuate a variety of chronic pathological conditions like cardiovascular diseases,neurodegenerative diseases,diabetes,and cancer.This review focuses on established antioxidant and anti-inflammatory properties of tea polyphenols and underlying mechanisms of their involvement in inflammatory bowel diseases(IBD).Tea polyphenols act as efficient antioxidants by inducing an endogenous antioxidant defense system and maintaining intracellular redox homeostasis.Tea polyphenols also regulate signaling pathways such as nuclear factor-κB,activator protein 1,signal transducer and activator of transcriptions,and nuclear factor E2-related factor 2,which are associated with IBD development.Accumulating pieces of evidence have indicated that tea polyphenols enhance epithelial barrier function and improve gut microbial dysbiosis,contributing to the management of inflammatory colitis.Therefore,this study suggests that supplementation of tea polyphenols could prevent inflammatory conditions and improve the outcome of patients with IBD.
文摘Recently, the increasing number of patients worldwide who are sensitive to dietary gluten without evidence of celiac disease or wheat allergy has contributed to the identification of a new gluten-related syndrome defined as non-celiac gluten sensitivity. Our knowledge regarding this syndrome is still lacking, and many aspects of this syndrome remain unknown. Its pathogenesis is heterogeneous, with a recognized pivotal role for innate immunity; many other factors also contribute, inctuding tow-grade intestinal inflammation, increased intestinal barrier function and changes in the intestinal microbiota. Gluten and other wheat proteins, such as amylase trypsin inhibitors, are the primary triggers of this syndrome, but it has also been hypothesized that a diet rich in fermentable monosaccharides and polyols may elicit its functional gastrointestinal symptoms. The epidemiology of this condition is far from established; its prevalence in the general population is highly variable, ranging from 0.63% to 6%. From a clinical point of view, non-celiac gluten sensitivity is characterized by a wide array of gastrointestinal and extraintestinal symptoms that occur shortly after the ingestion of gluten and improve or disappear when gluten is withdrawn from the diet. These symptoms recur when gluten is reintroduced. Because diagnostic biomarkers have not yet been identified, a double-blind placebo-controlled gluten challenge is currently the diagnostic method with the highest accuracy. Future research is needed to generate more knowledge regarding non-celiac gluten sensitivity, a condition that has global acceptance but has only a few certainties and many unresolved issues.