期刊文献+
共找到13,480篇文章
< 1 2 250 >
每页显示 20 50 100
Regulation role of miR-204 on SIRT1/VEGF in metabolic memory induced by high glucose in human retinal pigment epithelial cells
1
作者 Qiao-Ling Lai Ting Xie +1 位作者 Wei-Dong Zheng Yan Huang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1232-1237,共6页
AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithe... AIM:To examine the regulatory role of microRNA-204(miR-204)on silent information regulator 1(SIRT1)and vascular endothelial growth factor(VEGF)under highglucose-induced metabolic memory in human retinal pigment epithelial(hRPE)cells.METHODS:Cells were cultured with either normal(5 mmol/L)or high D-glucose(25 mmol/L)concentrations for 8d to establish control and high-glucose groups,respectively.To induce metabolic memory,cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.In addition,exposed in 25 mmol/L D-glucose for 4d and then transfected with 100 nmol/L miR-204 control,miR-204 inhibitor or miR-204 mimic in 5 mmol/L D-glucose for 4d.Quantitative reverse transcription-polymerase chain reaction(RT-qPCR)was used to detect miR-204 mRNA levels.SIRT1 and VEGF protein levels were assessed by immunohistochemical and Western blot.Flow cytometry was used to investigate apoptosis rate.RESULTS:It was found that high glucose promoted miR-204 and VEGF expression,and inhibited SIRT1 activity,even after the return to normal glucose culture conditions.Upregulation of miR-204 promoted apoptosis inhibiting SIRT1 and increasing VEGF expression.However,downregulation of miR-204 produced the opposite effects.CONCLUSION:The study identifies that miR-204 is the upstream target of SIRT1and VEGF,and that miR-204 can protect hRPE cells from the damage caused by metabolic memory through increasing SIRT1 and inhibiting VEGF expression. 展开更多
关键词 human retinal pigment epithelial metabolic memory microRNA-204 silent information regulator 1 vascular endothelial growth factor high-glucose
下载PDF
circRNA3669 promotes goat endometrial epithelial cells proliferation via miR-26a/RCN2 to activate PI3K/AKT-mTOR and MAPK pathways
2
作者 Xiaorui Liu Jiuzeng Cui +8 位作者 Mengyao Wei Xiaofei Wang Yuexia Liu Zhongshi Zhu Min Zhou Gui Ba Langda Suo Yuxuan Song Lei Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期960-974,共15页
The development of receptive endometrium(RE) from pre-receptive endometrium(PE) for successful embryo implantation is a complex dynamic process in which the morphology and physiological states of the endometrial epith... The development of receptive endometrium(RE) from pre-receptive endometrium(PE) for successful embryo implantation is a complex dynamic process in which the morphology and physiological states of the endometrial epithelium undergo a series of significant changes, including cell proliferation and apoptosis. However, the molecular mechanisms are not yet fully understood. In this study, a higher circRNA3669 level was observed in PE than in RE of goats. Functional assays revealed that this overexpression promoted the proliferation of goat endometrial epithelial cells(GEECs) by activating the expression of genes related to the PI3K/AKT-mTOR and MAPK pathways,thereby inhibiting apoptosis in vitro. Furthermore, circRNA3669 functioned as a competing endogenous RNA(ceRNA) to upregulate Reticulocalbin-2(RCN2) expression at the post-transcriptional level by interacting with and downregulating miR-26a in GEECs. In addition, RCN2, which is highly expressed in the PE of goats, was found to be regulated by β-estradiol(E2) and progesterone(P4). Our results demonstrated that RCN2 also affected the key proteins PI3K, AKT, mTOR, JNK, and P38 in the PI3K/AKT-mTOR and MAPK pathways, thereby facilitating GEECs proliferation and suppressing their apoptosis in vitro. Collectively, we constructed a new circRNA3669-miR-26aRCN2 regulatory network in GEECs, which further provides strong evidence that circRNA could potentially play a crucial regulatory role in the development of RE in goats. 展开更多
关键词 circRNA3669 RCN2 miR-26a goat endometrial epithelial cells(GEECs) PROLIFERATION
下载PDF
Umbilical cord mesenchymal stem cell exosomes alleviate necrotizing enterocolitis in neonatal mice by regulating intestinal epithelial cells autophagy
3
作者 Lin Zhu Lu He +2 位作者 Wu Duan Bo Yang Ning Li 《World Journal of Stem Cells》 SCIE 2024年第6期728-738,共11页
BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms rema... BACKGROUND Necrotizing enterocolitis(NEC)is a severe gastrointestinal disease that affects premature infants.Although mounting evidence supports the therapeutic effect of exosomes on NEC,the underlying mechanisms remain unclear.AIM To investigate the mechanisms underlying the regulation of inflammatory response and intestinal barrier function by umbilical cord mesenchymal stem cell(UCMSCs)exosomes,as well as their potential in alleviating NEC in neonatal mice.METHODS NEC was induced in 5-d-old C57BL/6 pups through hypoxia and gavage feeding of formula containing lipopolysaccharide(LPS),after which the mice received human UCMSC exosomes(hUCMSC-exos).The control mice were allowed to breastfeed with their dams.Ileal tissues were collected from the mice and analyzed by histopathology and immunoblotting.Colon tissues were collected from NEC neonates and analyzed by immunofluorescence.Molecular biology and cell culture approaches were employed to study the related mechanisms in intestinal epithelial cells.RESULTS We found that autophagy is overactivated in intestinal epithelial cells during NEC,resulting in reduced expression of tight junction proteins and an increased inflammatory response.The ability of hUCMSC-exos to ameliorate NEC in a mouse model was dependent on decreased intestinal autophagy.We also showed that hUCMSC-exos alleviate the inflammatory response and increase migration ability in intestinal epithelial cells induced by LPS.CONCLUSION These results contribute to a better understanding of the protective mechanisms of hUCMSC-exos against NEC and provide a new theoretical and experimental foundation for NEC treatment.These findings also enhance our understanding of the role of the autophagy mechanism in NEC,offering potential avenues for identifying new therapeutic targets. 展开更多
关键词 Necrotizing enterocolitis AUTOPHAGY Umbilical cord mesenchymal stem cell EXOSOMES Intestinal epithelial cell Intestinal barrier function
下载PDF
Cone-rod homeobox transcriptionally activates TCF7 to promote the proliferation of retinal pigment epithelial and retinoblastoma cells in vitro
4
作者 Na Zhao Ying-Ying Li +11 位作者 Jia-Man Xu Mu-Yao Yang Yun-Zhe Li Thomas Chuen Lam Lei Zhou Qi-Hu Tong Jun-Tao Zhang Sheng-Zhan Wang Xin-Xin Hu Yu-Fei Wu Qin-Kang Lu Ting-Yuan Lang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第11期1995-2006,共12页
AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of... AIM:To investigate the proliferation regulatory effect of cone-rod homeobox(CRX)in retinal pigment epithelium(RPE)and retinoblastoma(RB)cells to explore the potential application and side effect(oncogenic potential)of CRXbased gene therapy in RPE-based retinopathies.METHODS:Adult human retinal pigment epithelial(ARPE)-19 and human retinal pigment epithelial(RPE)-1 cells and Y79 RB cell were used in the study.Genetic manipulation was performed by lentivirus-based technology.The cell proliferation was determined by a CellTiter-Glo Reagent.The mRNA and protein levels were determined by quantitative real-time polymerase chain reaction(qPCR)and Western blot assay.The transcriptional activity of the promoter was determined by luciferase reporter gene assay.The bindings between CRX and transcription factor 7(TCF7)promoter as well as TCF7 and the promoters of TCF7 target genes were examined by chromatin immunoprecipitation(ChIP)assay.The transcription of the TCF7 was determined by a modified nuclear run-on assay.RESULTS:CRX overexpression and knockdown significantly increased(n=3,P<0.05 in all the cells)and decreased(n=3,P<0.01 in all the cells)the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and deceased the mRNA levels of Wnt signaling target genes[including MYC proto-oncogene(MYC),JUN,FOS like 1(FOSL1),CCND1,cyclin D2(CCND2),cyclin D3(CCND3),cellular communication network factor 4(CCN4),peroxisome proliferator activated receptor delta(PPARD),and matrix metallopeptidase 7(MMP7)]and the luciferase activity driven by the Wnt signaling transcription factor(TCF7).TCF7 overexpression and knockdown significantly increased and decreased the proliferation of RPE and RB cells and depletion of TCF7 significantly abolished the stimulatory effect of CRX on the proliferation of RPE and RB cells.CRX overexpression and knockdown significantly increased and decreased the mRNA level of TCF7 and the promoter of TCF7 was significantly immunoprecipitated by CRX antibody.CONCLUSION:CRX transcriptionally activates TCF7 to promote the proliferation of RPE and RB cells in vitro.CRX is a potential target for RPE-based regenerative medicine.The potential risk of this strategy,tumorigenic potential,should be considered. 展开更多
关键词 retinal pigment epithelial cell RETINOBLASTOMA cone-rod homeobox transcription factor 7 regenerative medicine tumorigenic potential
下载PDF
Overexpression of TRPV1 activates autophagy in human lens epithelial cells under hyperosmotic stress through Ca^(2+)-dependent AMPK/mTOR pathway
5
作者 Liu-Hui Huang Jiao Lyu +6 位作者 Sheng Chen Ting-Yi Liang Yu-Qing Rao Ping Fei Jing Li Hai-Ying Jin Pei-Quan Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期420-434,共15页
●AIM:To explore whether autophagy functions as a cellular adaptation mechanism in lens epithelial cells(LECs)under hyperosmotic stress.●METHODS:LECs were treated with hyperosmotic stress at the concentration of 270,... ●AIM:To explore whether autophagy functions as a cellular adaptation mechanism in lens epithelial cells(LECs)under hyperosmotic stress.●METHODS:LECs were treated with hyperosmotic stress at the concentration of 270,300,400,500,or 600 mOsm for 6,12,18,24h in vitro.Polymerase chain reaction(PCR)was employed for the mRNA expression of autophagyrelated genes,while Western blotting detected the targeted protein expression.The transfection of stub-RFP-sens-GFPLC3 autophagy-related double fluorescence lentivirus was conducted to detect the level of autophagy flux.Scanning electron microscopy was used to detect the existence of autolysosome.Short interfering RNA of autophagy-related gene(ATG)7,transient receptor potential vanilloid(TRPV)1 overexpression plasmid,related agonists and inhibitors were employed to their influence on autophagy related pathway.Flow cytometry was employed to test the apoptosis and intracellular Ca^(2+)level.Mitochondrial membrane potential was measured by JC-1 staining.The cell counting kit-8 assay was used to calculate the cellular viability.The wound healing assay was used to evaluate the wound closure rate.GraphPad 6.0 software was utilized to evaluate the data.●RESULTS:The hyperosmotic stress activated autophagy in a pressure-and time-dependent manner in LECs.Beclin 1 protein expression and conversion of LC3B II to LC3B I increased,whereas sequestosome-1(SQSTM1)protein expression decreased.Transient Ca^(2+)influx was stimulated caused by hyperosmotic stress,levels of mammalian target of rapamycin(mTOR)phosphorylation decreased,and the level of AMP-activated protein kinase(AMPK)phosphorylation increased in the early stage.Based on this evidence,autophagy activation through the Ca^(2+)-dependent AMPK/mTOR pathway might represent an adaptation process in LECs under hyperosmotic stress.Hyperosmotic stress decreased cellular viability and accelerated apoptosis in LECs and cellular migration decreased.Inhibition of autophagy by ATG7 knockdown had similar results.TRPV1 overexpression increased autophagy and might be crucial in the occurrence of autophagy promoted by hyperosmotic stress.●CONCLUSION:A combination of hyperosmotic stress and autophagy inhibition may be a promising approach to decrease the number of LECs in the capsular bag and pave the way for improving prevention of posterior capsular opacification and capsular fibrosis. 展开更多
关键词 CATARACT posterior capsular opacification lens epithelial cell hyperosmotic stress AUTOPHAGY apoptosis transient receptor potential vanilloid 1
下载PDF
SIRT1 inhibits apoptosis of human lens epithelial cells through suppressing endoplasmic reticulum stress in vitro and in vivo
6
作者 Hui Cui Di Sun +3 位作者 Sheng Meng Tian-Ju Ma Zi Ye Zhao-Hui Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1205-1216,共12页
AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing end... AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development. 展开更多
关键词 silent information regulator factor 2-related enzyme 1 endoplasmic reticulum stress APOPTOSIS human lens epithelial cells CATARACT
下载PDF
Cell metabolism pathways involved in the pathophysiological changes of diabetic peripheral neuropathy 被引量:5
7
作者 Yaowei Lv Xiangyun Yao +3 位作者 Xiao Li Yuanming Ouyang Cunyi Fan Yun Qian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期598-605,共8页
Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diab... Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways. 展开更多
关键词 cell metabolism diabetic peripheral neuropathy peripheral nerve injury protein kinase C pathway reactive oxygen species.
下载PDF
Metabolic and proteostatic differences in quiescent and active neural stem cells 被引量:1
8
作者 Jiacheng Yu Gang Chen +4 位作者 Hua Zhu Yi Zhong Zhenxing Yang Zhihong Jian Xiaoxing Xiong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期43-48,共6页
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerati... Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis.Therefore,neural regeneration may be a promising target for treatment of many neurological illnesses.The regenerative capacity of adult neural stem cells can be chara cterized by two states:quiescent and active.Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool.Active adult neural stem cells are chara cterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits.This review focuses on diffe rences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis.Furthermore,we discuss the physiological significance and underlying advantages of these diffe rences.Due to the limited number of adult neural stem cells studies,we refe rred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms. 展开更多
关键词 adult neurogenesis cell metabolic pathway cellular proliferation neural stem cell niches neural stem cells neuronal differentiation nutrient sensing pathway PROTEOSTASIS
下载PDF
Dietary xylo‑oligosaccharides and arabinoxylans improved growth efficiency by reducing gut epithelial cell turnover in broiler chickens
9
作者 Carla Castro Shahram Niknafs +3 位作者 Gemma Gonzalez‑Ortiz Xinle Tan Michael R.Bedford Eugeni Roura 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1325-1335,共11页
Background One of the main roles of the intestinal mucosa is to protect against environmental hazards.Supple-mentation of xylo-oligosaccharides(XOS)is known to selectively stimulate the growth of beneficial intestinal... Background One of the main roles of the intestinal mucosa is to protect against environmental hazards.Supple-mentation of xylo-oligosaccharides(XOS)is known to selectively stimulate the growth of beneficial intestinal bacteria and improve gut health and function in chickens.XOS may have an impact on the integrity of the intestinal epithelia where cell turnover is critical to maintain the compatibility between the digestive and barrier functions.The aim of the study was to evaluate the effect of XOS and an arabinoxylan-rich fraction(AXRF)supplementation on gut func-tion and epithelial integrity in broiler chickens.Methods A total of 128 broiler chickens(Ross 308)were assigned into one of two different dietary treatments for a period of 42 d:1)control diet consisting of a corn/soybean meal-based diet;or 2)a control diet supplemented with 0.5%XOS and 1%AXRF.Each treatment was randomly distributed across 8 pens(n=8)with 8 chickens each.Feed intake and body weight were recorded weekly.On d 42,one male chicken per pen was selected based on aver-age weight and euthanized,jejunum samples were collected for proteomics analysis.Results Dietary XOS/AXRF supplementation improved feed efficiency(P<0.05)from d 1 to 42 compared to the con-trol group.Proteomic analysis was used to understand the mechanism of improved efficiency uncovering 346 dif-ferentially abundant proteins(DAP)(Padj<0.00001)in supplemented chickens compared to the non-supplemented group.In the jejunum,the DAP translated into decreased ATP production indicating lower energy expenditure by the tissue(e.g.,inhibition of glycolysis and tricarboxylic acid cycle pathways).In addition,DAP were associated with decreased epithelial cell differentiation,and migration by reducing the actin polymerization pathway.Put-ting the two main pathways together,XOS/AXRF supplementation may decrease around 19%the energy required for the maintenance of the gastrointestinal tract.Conclusions Dietary XOS/AXRF supplementation improved growth efficiency by reducing epithelial cell migration and differentiation(hence,turnover),actin polymerization,and consequently energy requirement for maintenance of the jejunum of broiler chickens. 展开更多
关键词 ACTIN ARABINOXYLANS BROILER cell turnover Energy metabolism JEJUNUM Xylo-oligosaccharides
下载PDF
Glycogen metabolism-mediated intercellular communication in the tumor microenvironment influences liver cancer prognosis
10
作者 YANG ZHANG NANNAN QIN +6 位作者 XIJUN WANG RUI LIANG QUAN LIU RUOYI GENG TIANXIAO JIANG YUNFEI LIU JINWEI LI 《Oncology Research》 SCIE 2024年第3期563-576,共14页
Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq dat... Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells and 65 glycogen metabolism genes were analyzed bya nonnegative matrix factorization(NMF).The prognosis and immune response of new glycogen TME cell dusters were predicted by using HCC and immunotherapy cohorts from public databases.HOC single cell analysis was divided into fibroblasts,NT T cells,macrophages,endothelial clls,and B cells,which were separately divided into new cell clusters by glycogen metabolism gene annotation.Pseudo temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell dusters.Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell.related subtypes and diferent glycogen subtype cell clusters.SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism.In addition,TME cell dusters of glycogen metabolism were found to be enriched in expression in CAF subtypes,CD8 depleted,M1,and M2 types.Bulk seq analysis showed the prognostic signifcance of glycogen metabolism.mediated TME cell dusters in HCC,while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade(ICB),especially for CAFs,T cells,and macrophages In summary,our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell dusters. 展开更多
关键词 Glycogen metabolism metabolic map Single cell Tumor microenvironment Liver cancer PROGNOSIS IMMUNOTHERAPY
下载PDF
Hesperidin ameliorates H_(2)O_(2)-induced bovine mammary epithelial cell oxidative stress via the Nrf2 signaling pathway
11
作者 Qi Huang Jiashuo Liu +2 位作者 Can Peng Xuefeng Han Zhiliang Tan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1737-1750,共14页
Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucid... Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucidated.Results In this study, we investigated the effects of hesperidin on H_(2)O_(2)-induced oxidative stress in b MECs and the underlying molecular mechanism. We found that hesperidin attenuated H_(2)O_(2)-induced cell damage by reducing reactive oxygen species(ROS) and malondialdehyde(MDA) levels, increasing catalase(CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent.Conclusions Our results suggest that hesperidin could protect b MECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary. 展开更多
关键词 Bovine mammary epithelial cell HESPERIDIN Nrf2 signaling pathway Oxidative stress
下载PDF
Effect of acacetin on inhibition of apoptosis in Helicobacter pyloriinfected gastric epithelial cell line
12
作者 Qi-Xi Yao Zi-Yu Li +2 位作者 Hou-Le Kang Xin He Min Kang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第8期3624-3634,共11页
BACKGROUND Helicobacter pylori(H.pylori)infection can cause extensive apoptosis of gastric epithelial cells,serving as a critical catalyst in the progression from chronic gastritis,gastrointestinal metaplasia,and atyp... BACKGROUND Helicobacter pylori(H.pylori)infection can cause extensive apoptosis of gastric epithelial cells,serving as a critical catalyst in the progression from chronic gastritis,gastrointestinal metaplasia,and atypical gastric hyperplasia to gastric carcinoma.Prompt eradication of H.pylori is paramount for ameliorating the pathophysiological conditions associated with chronic inflammation of the gastric mucosa and the primary prevention of gastric cancer.Acacetin,which has multifaceted pharmacological activities such as anti-cancer,anti-inflammatory,and antioxidative properties,has been extensively investigated across various domains.Nevertheless,the impact and underlying mechanisms of action of acacetin on H.pylori-infected gastric mucosal epithelial cells remain unclear.AIM To explore the defensive effects of acacetin on apoptosis in H.pylori-infected GES-1 cells and to investigate the underlying mechanisms.METHODS GES-1 cells were treated with H.pylori and acacetin in vitro.Cell viability was assessed using the CCK-8 assay,cell mortality rate via lactate dehydrogenase assay,alterations in cell migration and healing capacities through the wound healing assay,rates of apoptosis via flow cytometry and TUNEL staining,and expression levels of apoptosis-associated proteins through western blot analysis.RESULTS H.pylori infection led to decreased GES-1 cell viability,increased cell mortality,suppressed cell migration,increased rate of apoptosis,increased expressions of Bax and cle-caspase3,and decreased Bcl-2 expression.Conversely,acacetin treatment enhanced cell viability,mitigated apoptosis induced by H.pylori infection,and modulated the expression of apoptosis-regulatory proteins by upregulating Bcl-2 and downregulating Bax and cleaved caspase-3.CONCLUSION Acacetin significantly improved GES-1 cell viability and inhibited apoptosis in H.pylori-infected GES-1 cells,thereby exerting a protective effect on gastric mucosal epithelial cells. 展开更多
关键词 Gastric epithelial GES-1 cells Helicobacter pylori Infection ACACETIN Antibiotic resistance APOPTOSIS
下载PDF
Enhancing the functionality of mesenchymal stem cells:An attractive treatment strategy for metabolic dysfunction-associated steatotic liver disease?
13
作者 Xiao-Qian Shan Lan Zhao 《World Journal of Stem Cells》 SCIE 2024年第10期854-859,共6页
The intrinsic heterogeneity of metabolic dysfunction-associated fatty liver disease(MASLD)and the intricate pathogenesis have impeded the advancement and clinical implementation of therapeutic interventions,underscori... The intrinsic heterogeneity of metabolic dysfunction-associated fatty liver disease(MASLD)and the intricate pathogenesis have impeded the advancement and clinical implementation of therapeutic interventions,underscoring the critical demand for novel treatments.A recent publication by Li et al proposes mesenchymal stem cells as promising effectors for the treatment of MASLD.This editorial is a continuum of the article published by Jiang et al which focuses on the significance of strategies to enhance the functionality of mesenchymal stem cells to improve efficacy in curing MASLD,including physical pretreatment,drug or chemical pretreatment,pretreatment with bioactive substances,and genetic engineering. 展开更多
关键词 metabolic dysfunction-associated fatty liver disease Mesenchymal stem cells Preprocess cell survival Therapeutic strategy
下载PDF
Intermittent fasting boosts antitumor immunity by restricting CD11b^(+)Ly6C^(low)Ly6G^(low) cell viability through glucose metabolism in murine breast tumor model
14
作者 Chenghao Fu Zhehao Liang +13 位作者 Zemiao Niu Ning Chen Yuemin Li Zhenhua Liang Yanwei Huo Hao Xi Rong Wang Yonghuan Yan Xiaoruo Gan Mengtian Wang Yun Huang Yan Zhang Mingming Gao Pin Lü 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2327-2345,共19页
Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed ... Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed that two cycles of fasting treatment significantly inhibited breast tumor growth and lung tissue metastasis,as well as prolonged overall survival in mice bearing 4T1 and 4T07 breast cancer.During this process,both the immunosuppressive monocytic-(M-)and granulocytic-(G-)myeloid-derived suppressor cell(MDSC)decreased,accompanied by an increase in interleukin(IL)7R^(+)and granzyme B^(+)T cells in the tumor microenvironment.Interestingly,we observed that Ly6G^(low)G-MDSC sharply decreased after fasting treatment,and the cell surface markers and protein mass spectrometry data showed potential therapeutic targets.Mechanistic investigation revealed that glucose metabolism restriction suppressed the splenic granulocytemonocyte progenitor and the generation of colony-stimulating factors and IL-6,which both contributed to the accumulation of G-MDSC.On the other hand,glucose metabolism restriction can directly induce the apoptosis of Ly6G^(low)G-MDSC,but not Ly6G^(high)subsets.In summary,these results suggest that glucose metabolism restriction induced by fasting treatment attenuates the immune-suppressive milieu and enhances the activation of CD3^(+)T cells,providing potential solutions for enhancing immune-based cancer interventions. 展开更多
关键词 Intermittent fasting Ly6G^(low)myeloid-derived suppressor cell apoptosis Extramedullary hematopoiesis Colony stimulating factor Glucose metabolism restriction
下载PDF
Sulforaphane prevents LPS‑induced inflammation by regulating the Nrf2‑mediated autophagy pathway in goat mammary epithelial cells and a mouse model of mastitis 被引量:1
15
作者 Dan Shao Wenxiang Shen +6 位作者 Yuyang Miao Zhen Gao Menghao Pan Qiang Wei Zuoting Yan Xiaoe Zhao Baohua Ma 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第5期2093-2106,共14页
Background Mastitis not only deteriorates the composition or quality of milk,but also damages the health and pro-ductivity of dairy goats.Sulforaphane(SFN)is a phytochemical isothiocyanate compound with various pharma... Background Mastitis not only deteriorates the composition or quality of milk,but also damages the health and pro-ductivity of dairy goats.Sulforaphane(SFN)is a phytochemical isothiocyanate compound with various pharmacologi-cal effects such as anti-oxidant and anti-inflammatory.However,the effect of SFN on mastitis has yet to be elucidated.This study aimed to explore the anti-oxidant and anti-inflammatory effects and potential molecular mechanisms of SFN in lipopolysaccharide(LPS)-induced primary goat mammary epithelial cells(GMECs)and a mouse model of mastitis.Results In vitro,SFN downregulated the mRNA expression of inflammatory factors(tumor necrosis factor-α(TNF-α),interleukin(IL)-1βand IL-6),inhibited the protein expression of inflammatory mediators(cyclooxygenase-2(COX2),and inducible nitric oxide synthase(iNOS))while suppressing nuclear factor kappa-B(NF-κB)activation in LPS-induced GMECs.Additionally,SFN exhibited an antioxidant effect by increasing Nrf2 expression and nuclear translocation,up-regulating antioxidant enzymes expression,and decreasing LPS-induced reactive oxygen species(ROS)produc-tion in GMECs.Furthermore,SFN pretreatment promoted the autophagy pathway,which was dependent on the increased Nrf2 level,and contributed significantly to the improved LPS-induced oxidative stress and inflammatory response.In vivo,SFN effectively alleviated histopathological lesions,suppressed the expression of inflammatory factors,enhanced immunohistochemistry staining of Nrf2,and amplified of LC3 puncta LPS-induced mastitis in mice.Mechanically,the in vitro and in vivo study showed that the anti-inflammatory and anti-oxidative stress effects of SFN were mediated by the Nrf2-mediated autophagy pathway in GMECs and a mouse model of mastitis.Conclusions These results indicate that the natural compound SFN has a preventive effect on LPS-induced inflam-mation through by regulating the Nrf2-mediated autophagy pathway in primary goat mammary epithelial cells and a mouse model of mastitis,which may improve prevention strategies for mastitis in dairy goats. 展开更多
关键词 AUTOPHAGY Goat mammary epithelial cells INFLAMMATION NRF2 Oxidative stress SULFORAPHANE
下载PDF
T cells in pancreatic cancer stroma:Tryptophan metabolism plays an important role in immunoregulation 被引量:1
16
作者 Ting Yang Qiao-Qi Li +1 位作者 Yong-Mei Liu Biao Yang 《World Journal of Gastroenterology》 SCIE CAS 2023年第17期2701-2703,共3页
Several studies have shown that the immune system is highly regulated by tryptophan metabolism,which serves as an immunomodulatory factor.The indoleamine 2,3-dioxygenase 1(IDO1),as an intracellular enzyme that partici... Several studies have shown that the immune system is highly regulated by tryptophan metabolism,which serves as an immunomodulatory factor.The indoleamine 2,3-dioxygenase 1(IDO1),as an intracellular enzyme that participates in metabolism of the essential amino acid tryptophan in the kynurenine pathway,is an independent prognostic marker for pancreatic cancer(PC).First,overexpression of IDO1 inhibits the maturation of dendritic cells and T-cell proliferation in the liver and spleen.Second,the high expression of kynurenine induces and activates the aryl hydrocarbon receptor,resulting in upregulated programmed cell death protein 1 expression.Third,the induction of IDO1 can lead to loss of the T helper 17 cell/regulatory T cell balance,mediated by the proximal tryptophan catabolite from IDO metabolism.In our study,we found that overexpression of IDO1 upregulated CD8+T cells and reduced natural killer T cells in pancreatic carcinoma in mice.Hence,it may be essential to pay more attention to tryptophan metabolism in patients,especially those who are tolerant to immunotherapy for PC. 展开更多
关键词 IMMUNOSUPPRESSION Pancreatic cancer stroma T cell Tryptophan metabolism XXX
下载PDF
Tanshinone IIA protects intestinal epithelial cells from ferroptosis through the upregulation of GPX4 and SLC7A11
17
作者 HAN WANG YANG SUN +3 位作者 XIAOXU ZHANG XIAOYING WANG YUJUN XIA LISHENG WANG 《BIOCELL》 SCIE 2023年第5期1107-1115,共9页
Background:Inflammatory bowel disease(IBD)is a chronic inflammatory disease of the gastrointestinal tract.The destruction of the intestinal epithelial barrier is one of the major pathological processes in IBD patholog... Background:Inflammatory bowel disease(IBD)is a chronic inflammatory disease of the gastrointestinal tract.The destruction of the intestinal epithelial barrier is one of the major pathological processes in IBD pathology.Growing evidence indicated that epithelial cell ferroptosis is linked to IBD and is considered a target process.Methods:RAS-selective lethal 3(RSL3)was used to induce ferroptosis in intestinal epithelial cell line No.6(IEC-6)cells,and cell ferroptosis and the effects of tanshinone IIA(Tan IIA)were determined by cell counting kit-8(CCK-8),reactive oxygen species(ROS)staining,Giemsa staining and transmission electron microscope(TEM).The cell viability of natural product library compounds was determined by CCK-8.The expression of ferroptosis-related genes were detected by real-time quantitative polymerase chain reaction(RT-qPCR)and western blot.Results:Treatment of IEC-6 cells results in the accumulation of ROS and typical morphological characteristics of ferroptosis.RSL3 treatment caused rapid cellular cytotoxicity which could be reversed by ferrostatin-1(Fer-1)in IEC-6 cells.Natural product library screening revealed that Tan IIA is a potent inhibitor of IEC-6 cell ferroptosis.Tan IIA could significantly protect the RSL3-induced ferroptosis of IEC-6 cells.Furthermore,the ferroptosis suppressors,glutathione peroxidase 4(GPX4),solute carrier family 7 member 11(SLC7A11),and miR-17-92 were found to be early response genes in RSL3-treated cells.Treatment of IEC-6 cells with Tan IIA resulted in upregulation of GPX4,SLC7A11,and miR-17-92.Conclusion:Our study demonstrated that Tan IIA protects IEC-6 cells from ferroptosis through the upregulation of GPX4,SLC7A11,and miR-17-92.The findings might provide a theoretical grounding for the future application of Tan IIA to treat or prevent IBD. 展开更多
关键词 Tanshinone IIA GPX4 Ferroptosis Intestinal epithelial cells IBD
下载PDF
Role of reactive oxygen species in epithelial-mesenchymal transition and apoptosis of human lens epithelial cells
18
作者 Rui-Hua Jing Cong-Hui Hu +1 位作者 Tian-Tian Qi Bo Ma 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第12期1935-1941,共7页
AIM:To investigate the role of reactive oxygen species(ROS)in epithelial–mesenchymal transition(EMT)and apoptosis of human lens epithelial cells(HLECs).METHODS:Flow cytometry was used to assess ROS production after t... AIM:To investigate the role of reactive oxygen species(ROS)in epithelial–mesenchymal transition(EMT)and apoptosis of human lens epithelial cells(HLECs).METHODS:Flow cytometry was used to assess ROS production after transforming growth factorβ2(TGF-β2)induction.Apoptosis of HLECs after H_(2)O_(2) and TGF-β2 interference with or without ROS scavenger N-acetylcysteine(NAC)were assessed by flow cytometry.The corresponding protein expression levels of the EMT markerα-smooth muscle actin(α-SMA),the extracellular matrix(ECM),marker fibronectin(Fn),and apoptosis-associated proteins were detected by using Western blotting in the presence of an ROS scavenger(NAC).Wound-healing and Transwell assays were used to assess the migration capability of HLECs.RESULTS:TGF-β2 stimulates ROS production within 8h in HLECs.Additionally,TGF-β2 induced HLECs cell apoptosis,EMT/ECM synthesis protein markers expression,and pro-apoptotic proteins production;nonetheless,NAC treatment prevented these responses.Similarly,TGF-β2 promoted HLECs cell migration,whereas NAC inhibited cell migration.We further determined that although ROS initiated apoptosis,it only induced the accumulation of the EMT markerα-SMA protein,but not COL-1 or Fn.CONCLUSION:ROS contribute to TGF-β2-induced EMT/ECM synthesis and cell apoptosis of HLECs;however,ROS alone are not sufficient for EMT/ECM synthesis. 展开更多
关键词 human lens epithelial cells epithelial-mesenchymal transition transforming growth factorβ2 reactive oxygen species APOPTOSIS
下载PDF
Morroniside ameliorates lipopolysaccharide-induced inflammatory damage in iris pigment epithelial cells through inhibition of TLR4/JAK2/STAT3 pathway
19
作者 Wen-Jie Li Lin Liu Hong Lu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第12期1928-1934,共7页
AIM:To investigate the effect of morroniside(Mor)on lipopolysaccharide(LPS)-treated iris pigment epithelial cells(IPE).METHODS:IPE cells were induced by LPS and treated with Mor.Cell proliferation was detected by cell... AIM:To investigate the effect of morroniside(Mor)on lipopolysaccharide(LPS)-treated iris pigment epithelial cells(IPE).METHODS:IPE cells were induced by LPS and treated with Mor.Cell proliferation was detected by cell counting kit(CCK)-8,apoptosis was detected by flow cytometry,the levels of tumor necrosis factor-α(TNF-α),interleukin(IL)-6,and IL-8 were measured by enzyme-linked immunosorbent assay(ELISA)kits,and the protein expression of TLR4,JAK2,p-JAK2,STAT3,and p-STAT3 was analyzed by Western blotting.In addition,overexpression of TLR4 and Mor treatment of LPS-stimulated IPE cells were also tested for the above indices.RESULTS:Mor effectively promoted the proliferation and inhibited the apoptosis of LPS-treated IPE cells.In addition,Mor significantly reduced the levels of TNF-α,IL-6,and IL-8 and significantly inhibited the expression of TLR4,p-JAK2,and p-STAT3 in LPS-treated IPE cells.The effect of Mor on LPS-treated IPE cells was markedly attenuated after overexpression of TLR4.CONCLUSION:These findings suggest that Mor may ameliorate LPS-induced inflammatory damage and apoptosis in IPE through inhibition of TLR4/JAK2/STAT3 pathway. 展开更多
关键词 MORRONISIDE iris pigment epithelial cells INFLAMMATORY TLR4/JAK2/STAT3 pathway
下载PDF
Protective Effect and Autophagy Mechanism of Lycium barbarum Polysaccharides on Retinal Pigment Epithelial Cells Under High-Glucose Conditions
20
作者 Min Zhang Guomin Yao Rong Li 《Journal of Clinical and Nursing Research》 2023年第5期7-15,共9页
Objective:To study the effects of Lycium barbarum polysaccharide(LBP)on the proliferation,apoptosis,and autophagy of retinal pigment epithelial(RPE)cells cultured under high-glucose conditions.Methods:The ARPE-19 cell... Objective:To study the effects of Lycium barbarum polysaccharide(LBP)on the proliferation,apoptosis,and autophagy of retinal pigment epithelial(RPE)cells cultured under high-glucose conditions.Methods:The ARPE-19 cell line was randomly divided into a control group(normally cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12[DMEM/F-12]medium),a high-glucose group(HG;50 mmol/L glucose added to DMEM/F-12 medium),and a HG+LBP group(incubated in DMEM/F-12 medium containing 1 mg/mL LBP for 24 h,and then treated with 50 mmol/L glucose for 24 h).Following Ad-mCherry-GFP-LC3B infection,cell proliferation,apoptosis,mammalian target of rapamy-cin(mTOR)expression,and autophagic flux were determined by Cell Counting Kit-8(CCK-8),AnnexinV-APC/7-AAD Apoptosis Detection Kit,Western blot,and laser confocal microscopy,respectively.Results:The proliferation rate of ARPE-19 cells in the HG group was significantly lower than that in the control group(P<0.05),while the proliferation rate of ARPE-19 cells in the HG+LBP group was significantly higher than that in the HG group(P<0.05).The apoptosis rate of ARPE-19 cells in the HG group was significantly higher than that in the control group(P<0.05),while the apoptosis rate of ARPE-19 cells in the HG+LBP group was significantly lower than that in the HG group(P<0.05).The relative expression of phosphorylated mTOR(p-mTOR)of ARPE-19 cells in the HG group was significantly lower than that in the control group(P<0.05),with enhanced autophagic flux;when compared with the HG group,the HG+LBP group had significantly higher expression of p-mTOR(P<0.05),with diminished autophagic flux.Conclusion:LBP has a protective effect on RPE cells with high glucose-induced injury,and its mechanism may be related to LBP inhibition of high glucose-induced abnormal autophagy. 展开更多
关键词 Lycium barbarum polysaccharides High glucose Retinal pigment epithelial cell AUTOPHAGY cell culture
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部