期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MiR-663a Inhibits Radiation-Induced Epithelium-to-Mesenchymal Transition by Targeting TGF-β1 被引量:2
1
作者 QU Pei SHAO Zhi Ang +8 位作者 WANG Bing HE Jin Peng ZHANG Ya Nan WEI Wen Jun HUA Jun Rui ZHOU Heng LU Dong DING Nan WANG Ju Fang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2022年第5期437-447,共11页
Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during rad... Objective miR-663 a has been reported to be downregulated by X-ray irradiation and participates in radiation-induced bystander effect via TGF-β1.The goal of this study was to explore the role of mi R-663 a during radiation-induced Epithelium-to-mesenchymal transition(EMT).Methods TGF-β1 or IR was used to induce EMT.After mi R-663 a transfection,cell migration and cell morphological changes were detected and the expression levels of mi R-663 a,TGF-β1,and EMT-related factors were quantified.Results Enhancement of cell migration and promotion of mesenchymal changes induced by either TGF-β1 or radiation were suppressed by mi R-663 a.Furthermore,both X-ray and carbon ion irradiation resulted in the upregulation of TGF-β1 and downregulation of mi R-663 a,while the silencing of TGF-β1 by mi R-663 a reversed the EMT process after radiation.Conclusion Our findings demonstrate an EMT-suppressing effect by mi R-663 a via TGF-β1 in radiationinduced EMT. 展开更多
关键词 epithelium-to-mesenchymal transition(EMT) Ionizing Radiation TGF-Β1 microRNA miR-663a
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部