The effect of Earth precession angle on a climate is presented here. It is shown that the glaciation epochs occurred only when the precession angle was low. After the continental glaciation formed in the Northern hemi...The effect of Earth precession angle on a climate is presented here. It is shown that the glaciation epochs occurred only when the precession angle was low. After the continental glaciation formed in the Northern hemisphere, Earth’s spherecal symmetry was disrupted and its precession angle increased drastically. As a result, a drastic and rapid climate warm-up occurred, the glaciers melted down and an interglacial stadial1 began. Subsequently, affected by the Lunar-Solar gravity pull on the Earth’s equatorial swelling, the precession angle gradually decreased and a new cooling-down phase occurred. As a result, there was nonlinear oscillation of Earth’s climate with periods on the order of 100 - 120 MY.展开更多
This study examines the prenoon-postnoon asymmetrical behaviour and latitudinal dependence of Sq (solar quiet) current system using data of quiet-time daily variations of the geomagnetic field intensity from twelve ...This study examines the prenoon-postnoon asymmetrical behaviour and latitudinal dependence of Sq (solar quiet) current system using data of quiet-time daily variations of the geomagnetic field intensity from twelve geomagnetic observatories along the African Meridian. The dataset of each month during 2009 (noted for empirically low solar activity with average sunspot number Rz = 3.1) was treated for non-cyclic correction. From a blend of spatial contour maps and graphical analyses, our results show that Sq current system exhibits in the daytime unstable tendency. A consistent diurnal variation of solar quiet variation in the horizontal component of earth magnetic field (SqH) was observed which exhibits synoptic pre-noon and post-noon mean values of 59 nT and 33 nT with ranges of 33 nT and 24 nT, respectively. The centre of circulation of overhead electric current is observed to exhibit both pre-noon and post-noon epoch's asymmetric variations. This is noted to indicate the dynamic heterogeneous genesis of the mechanism responsible for the observation. The spatial contour mapping result depicts SqH behaviour switch twice a year around March and September with similar spatial distribution in January up to March and then October up to December. A similar distribution was noted for the months of April to September. Prenoon values of SqH have higher magnitudes across the latitudes in comparison with the post noon values just as is the case at noontime.展开更多
We study on reduced dynamic orbit determination using differenced phase in adjacent epochs for spacebome dual-frequency GPS. This method not only overcomes the shortcomings that the epoch-difference kinematic method c...We study on reduced dynamic orbit determination using differenced phase in adjacent epochs for spacebome dual-frequency GPS. This method not only overcomes the shortcomings that the epoch-difference kinematic method cannot be used when observation geometry is poor or observations are insufficient, but also avoids solving the ambiguity in the zero-difference reduced dynamic method. As the epoch-difference method is not sensitive to the impact of phase cycle slips, it can lower the difficulty of slip detection in phase observation preprocessing. In the solution strategies, we solve the high-dimensional matrix computation problems by decomposing the long observation arc into a number of short arcs. By gravity recovery and climate experiment (GRACE) satellite orbit determination and compared with GeoForschungsZentrum (GFZ) post science orbit, for epoch-difference reduced dynamic method, the root mean squares (RMSs) of radial, transverse and normal components are 1.92 cm, 3.83 cm and 3.80 cm, and the RMS in three dimensions is 5.76 cm. The solution's accuracy is comparable to the zero-difference reduced dynamic method.展开更多
Fast radio burst(FRB)is a type of extragalactic radio signal characterized by millisecond duration,extremely high brightness temperature,and large dispersion measure.It remains a mystery in the universe.Advancements i...Fast radio burst(FRB)is a type of extragalactic radio signal characterized by millisecond duration,extremely high brightness temperature,and large dispersion measure.It remains a mystery in the universe.Advancements in instrumentation have led to the discovery of 816 FRB sources and 7622 bursts from 67 repeating FRBs(https://blinkverse.alkaidos.cn/).This field is undergoing rapid development,rapidly advancing our understanding of the physics of FRBs as new observational data accumulates.The accumulation of data has also promoted exploration of our universe.In this review,we summarize the statistical analysis and cosmological applications using large samples of FRBs,including the energy functions,the waiting time distributions of repeating FRBs,probe of missing baryons and circumgalactic medium in the universe,measurements of cosmological parameters,exploration of the epoch of re-ionization history,and research of the gravitational lensing of FRBs.展开更多
The idea of a human community with a shared future was proposed by the Communist Party of China(CPC)Central Committee with Comrade Xi Jinping at its core for the future development of human beings to face up to the mo...The idea of a human community with a shared future was proposed by the Communist Party of China(CPC)Central Committee with Comrade Xi Jinping at its core for the future development of human beings to face up to the most important question in today's world:“What is happening to the world and what should we do?”It profoundly answers the question of the world,history,and the times.The theory of a human community with a shared future is an innovative theory with a multidimensional formation logic that guides humanity toward continually seeking common interests and values.This paper dives into the profound motivations behind building a human community with a shared future from historical,cultural,and practical dimensions and analyzes its epochal value from both domestic and international perspectives.This not only helps exert China's role in the international community,contributing Chinese strength to the construction of a peaceful,stable,and prosperous human society,but also enhances the influence of the idea of a human community with a shared future in the international community,accelerating the building of a human community with a shared future that considers the legitimate concerns of all countries,and aiding in solving the crises facing the world.展开更多
Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an ...Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an aperture of at least four meters. With the support of their governments in the US, Europe, and Canada, 20,000 people brought this vision to life as the 6.5-meter James Webb Space Telescope (JWST). The telescope is working perfectly, delivering much better image quality than expected [1]. JWST is one hundred times more powerful than the Hubble Space Telescope and has already captured spectacular images of the distant universe. A view of a tiny part of the sky reveals many well-formed spiral galaxies, some over thirteen billion light-years away. These observations challenge the standard Big Bang Model (BBM), which posits that early galaxies should be small and lack well-formed spiral structures. JWST’s findings are prompting scientists to reconsider the BBM in its current form. Throughout the history of science, technological advancements have led to new results that challenge established theories, sometimes necessitating their modification or even abandonment. This happened with the geocentric model four centuries ago, and the BBM may face a similar reevaluation as JWST provides more images of the distant universe. In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of Variable Gravitational Constant, later incorporating the concept of Continuous Creation of Matter in the universe. The Hypersphere World-Universe Model (WUM) builds on these ideas, introducing a distinct mechanism for matter creation. WUM is proposed as an alternative to the prevailing BBM. Its main advantage is the elimination of the “Initial Singularity” and “Inflation”, offering explanations for many unresolved problems in Cosmology. WUM is presented as a natural extension of Classical Physics with the potential to bring about a significant transformation in both Cosmology and Classical Physics. Considering JWST’s discoveries, WUM’s achievements, and 87 years of Dirac’s proposals, it is time to initiate a fundamental transformation in Astronomy, Cosmology, and Classical Physics. The present paper is a continuation of the published article “JWST Discoveries—Confirmation of World-Universe Model Predictions” [2] and a summary of the paper “Hypersphere World-Universe Model: Digest of Presentations John Chappell Natural Philosophy Society” [3]. Many results obtained there are quoted in the current work without full justification;interested readers are encouraged to view the referenced papers for detailed explanations.展开更多
It is an American tradition to name the guiding principles of any new foreign policy as a president’s doctrine during his incumbency.Realizing that it was facing epochal global changes and needed adjustments in its f...It is an American tradition to name the guiding principles of any new foreign policy as a president’s doctrine during his incumbency.Realizing that it was facing epochal global changes and needed adjustments in its foreign policy to face evolving new challenges,the Joe Biden administration embarked on a comprehensive and significant adjustment to American foreign policy under the guidance of new strategic concepts.展开更多
The following contribution aims to interpret the methodical device of Husserl’s epochéin light of the concept of breakthrough.Since the epochéis a theoretical device directed towards the suspension of the n...The following contribution aims to interpret the methodical device of Husserl’s epochéin light of the concept of breakthrough.Since the epochéis a theoretical device directed towards the suspension of the natural attitude,I will first attempt to define the concept of natural attitude.Subsequently,I will seek to understand the rich meaning of the concept of epoché.Finally,I will explore how this element is related to the concept of breakthrough.In other words,I will endeavour to clarify how the epochédetermines a breakthrough of the natural attitude,which is not to be understood as“annihilation”or“destruction”but as a traversal.展开更多
The Lagrange-Jacobi equation is one of the significant tools for the qualitative analysis of the n-body problem. In this paper, we present the modified Lagrange-Jacobi equation by introducing a new formal parameter of...The Lagrange-Jacobi equation is one of the significant tools for the qualitative analysis of the n-body problem. In this paper, we present the modified Lagrange-Jacobi equation by introducing a new formal parameter of n-body problem and propose its application to the dynamical study of clusters of galaxies which are large-scale structures of Universe. We put forward and study a new dynamical problem which is related to the stage of relaxation of observed stationary clusters of galaxies which are considered as a non-equilibrium systems of point masses. We also received the analytical form of the potential energy of such galaxy clusters. One of the applications of this analytical form is the analytical relation between the time of setting up the virial equilibrium in relaxing clusters of galaxies and the cosmological epoch T.展开更多
This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy la...This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy law by assuming h<sup>2</sup> instead, as still do ISO-ASTM 14,577 standards. This law is valid for all materials and all “one-point indentation” temperatures. It detects initial surface effects and phase-transition kink-unsteadiness. Why is that important? The mechanically induced phase-transitions form polymorph interfaces with increased risk of crash nucleation for example at the pickle forks of airliners. After our published crashing risk, as nucleated within microscopic polymorph-interfaces via pre-cracks, had finally appeared (we presented microscopic images (5000×) from a model system), 550 airliners were all at once grounded for 18 months due to such microscopic pre-cracks at their pickle forks (connection device for wing to body). These pre-cracks at phase-transition interfaces were previously not complained at the (semi)yearlycheckups of all airliners. But materials with higher compliance against phase- transitions must be developed for everybody’s safety, most easily by checking with nanoindentations, using their physically correct analyses. Unfortunately, non-physical analyses, as based on the after all incredible exponent 2 on h for the F<sub>N</sub> versus h loading curve are still enforced by ISO-ASTM standards that cannot detect phase-transitions. These standards propagate that all of the force, as applied to the penetrating cone or pyramid shall be used for the depth formation, but not also in part for the pressure to the indenter environment. However, the remaining part of pressure (that was not consumed for migrations, etc.) is always used for the elastic modulus detection routine. That severely violates the energy-law! Furthermore, the now physically analyzed published loading curves contain the phase-transition onsets and energies information, because these old-fashioned authors innocently (?) published (of course correct) experimental loading curves. These follow as ever the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> relation that does not violate the energy law. Nevertheless, the old-fashioned authors stubbornly assume h<sup>2</sup>instead of h<sup>3/2</sup> as still do ISO-ASTM 14,577 standards according to an Oliver-Pharr publication of 1992 and textbooks. The present work contributes to understanding the temperature dependence of phase-transitions under mechanical load, not only for aviation and space flights, which is important. The physical calculations use exclusively regressions and pure algebra (no iterations, no fittings, and no simulations) in a series of straightforward steps by correcting for unavoidable initial effects from the axis cuts of the linear branches from the above equation exhibiting sharp kink unsteadiness at the onset of phase transitions. The test loading curves are from Molybdenum and Al 7075 alloy. The valid published loading curves strictly follow the F<sub>N</sub> = k-h<sup>3/2</sup> relation. Full applied work, conversion work, and conversion work per depth unit show reliable overall comparable order of magnitude values at temperature increase by 150°C (Al 7075) and 980°C (Mo) when also considering different physical hardnesses and penetration depths. It turns out how much the normalized endothermic phase-transition energy decreases upon temperature increase. For the only known 1000°C indentation we provide reason that the presented loading curves changes are only to a minor degree caused by the thermal expansion. The results with Al 7075 up to 170°C are successfully compared. Al 7075 alloy is also checked by indentation with liquid nitrogen cooling (77 K). It gives two endothermic and one very prominent exothermic phase transition with particularly high normalized phase-transition energy. This indentation loading curve at liquid nitrogen temperature reveals epochal novelties. The energy requiring endothermic phase transitions (already seen at 20°C and above) at 77 K is shortly after the start of the second polymorph (sharply at 19.53 N loading force) followed by a strongly exothermic phase-transition by producing (that is losing) energy-content. Both processes at 77 K are totally unexpected. The produced energy per depth unit is much higher energy than the one required for the previous endothermic conversions. This exothermic phase-transition profits from the inability to provide further energy for the formation of the third polymorph as endothermic obtained at 70°C and above. That is only possible because the very cold crystal can no longer support endothermic events but supports exothermic ones. Both endothermic and exothermic phase-transitions at 77 K under load are unprecedented and were not expected before. While the energetic support at 77 K for endothermic processes under mechanical load is unusual but still understandable (there are also further means to produce lower temperatures). But strongly exothermicphase-transition under mechanical load for the production of new modification with negative energy content (less than the energy content of the ambient polymorph) at very low temperature is an epochal event here on earth. It leads to new global thinking and promises important new applications. The energy content of strongly exothermic transformed material is less than the thermodynamic standard zero energy-content on earth. And it can only be reached when there is no possibility left to produce an endothermic phase-transition. Such less than zero-energy-content materials should be isolated, using appropriate equipment. Their properties must be investigated by chemists, crystallographers, and physicists for cosmological reasons. It could be that such materials will require cooling despite their low energy content (higher stability!) and not survive at ambient temperatures and pressures on earth, but only because we do not know of such negative-energy-content materials with our arbitrary thermodynamic standard zeros on earth. At first one will have to study how far we can go up with temperature for keeping them stable. Thus, the apparently never before considered unprecedented result opens up new thinking for the search of new polymorphs that can, of course, not be reached by heating. Various further applications including cosmology and space flight explorations are profiting from it.展开更多
文摘The effect of Earth precession angle on a climate is presented here. It is shown that the glaciation epochs occurred only when the precession angle was low. After the continental glaciation formed in the Northern hemisphere, Earth’s spherecal symmetry was disrupted and its precession angle increased drastically. As a result, a drastic and rapid climate warm-up occurred, the glaciers melted down and an interglacial stadial1 began. Subsequently, affected by the Lunar-Solar gravity pull on the Earth’s equatorial swelling, the precession angle gradually decreased and a new cooling-down phase occurred. As a result, there was nonlinear oscillation of Earth’s climate with periods on the order of 100 - 120 MY.
文摘This study examines the prenoon-postnoon asymmetrical behaviour and latitudinal dependence of Sq (solar quiet) current system using data of quiet-time daily variations of the geomagnetic field intensity from twelve geomagnetic observatories along the African Meridian. The dataset of each month during 2009 (noted for empirically low solar activity with average sunspot number Rz = 3.1) was treated for non-cyclic correction. From a blend of spatial contour maps and graphical analyses, our results show that Sq current system exhibits in the daytime unstable tendency. A consistent diurnal variation of solar quiet variation in the horizontal component of earth magnetic field (SqH) was observed which exhibits synoptic pre-noon and post-noon mean values of 59 nT and 33 nT with ranges of 33 nT and 24 nT, respectively. The centre of circulation of overhead electric current is observed to exhibit both pre-noon and post-noon epoch's asymmetric variations. This is noted to indicate the dynamic heterogeneous genesis of the mechanism responsible for the observation. The spatial contour mapping result depicts SqH behaviour switch twice a year around March and September with similar spatial distribution in January up to March and then October up to December. A similar distribution was noted for the months of April to September. Prenoon values of SqH have higher magnitudes across the latitudes in comparison with the post noon values just as is the case at noontime.
基金National Natural Science Foundation of China (61002033, 60902089) Open Research Fund of State Key Laboratory of Astronautic Dynamics (2011ADL-DW0103)
文摘We study on reduced dynamic orbit determination using differenced phase in adjacent epochs for spacebome dual-frequency GPS. This method not only overcomes the shortcomings that the epoch-difference kinematic method cannot be used when observation geometry is poor or observations are insufficient, but also avoids solving the ambiguity in the zero-difference reduced dynamic method. As the epoch-difference method is not sensitive to the impact of phase cycle slips, it can lower the difficulty of slip detection in phase observation preprocessing. In the solution strategies, we solve the high-dimensional matrix computation problems by decomposing the long observation arc into a number of short arcs. By gravity recovery and climate experiment (GRACE) satellite orbit determination and compared with GeoForschungsZentrum (GFZ) post science orbit, for epoch-difference reduced dynamic method, the root mean squares (RMSs) of radial, transverse and normal components are 1.92 cm, 3.83 cm and 3.80 cm, and the RMS in three dimensions is 5.76 cm. The solution's accuracy is comparable to the zero-difference reduced dynamic method.
基金supported by the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240308)the National Natural Science Foundation of China(Grant No.12273009)。
文摘Fast radio burst(FRB)is a type of extragalactic radio signal characterized by millisecond duration,extremely high brightness temperature,and large dispersion measure.It remains a mystery in the universe.Advancements in instrumentation have led to the discovery of 816 FRB sources and 7622 bursts from 67 repeating FRBs(https://blinkverse.alkaidos.cn/).This field is undergoing rapid development,rapidly advancing our understanding of the physics of FRBs as new observational data accumulates.The accumulation of data has also promoted exploration of our universe.In this review,we summarize the statistical analysis and cosmological applications using large samples of FRBs,including the energy functions,the waiting time distributions of repeating FRBs,probe of missing baryons and circumgalactic medium in the universe,measurements of cosmological parameters,exploration of the epoch of re-ionization history,and research of the gravitational lensing of FRBs.
文摘The idea of a human community with a shared future was proposed by the Communist Party of China(CPC)Central Committee with Comrade Xi Jinping at its core for the future development of human beings to face up to the most important question in today's world:“What is happening to the world and what should we do?”It profoundly answers the question of the world,history,and the times.The theory of a human community with a shared future is an innovative theory with a multidimensional formation logic that guides humanity toward continually seeking common interests and values.This paper dives into the profound motivations behind building a human community with a shared future from historical,cultural,and practical dimensions and analyzes its epochal value from both domestic and international perspectives.This not only helps exert China's role in the international community,contributing Chinese strength to the construction of a peaceful,stable,and prosperous human society,but also enhances the influence of the idea of a human community with a shared future in the international community,accelerating the building of a human community with a shared future that considers the legitimate concerns of all countries,and aiding in solving the crises facing the world.
文摘Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an aperture of at least four meters. With the support of their governments in the US, Europe, and Canada, 20,000 people brought this vision to life as the 6.5-meter James Webb Space Telescope (JWST). The telescope is working perfectly, delivering much better image quality than expected [1]. JWST is one hundred times more powerful than the Hubble Space Telescope and has already captured spectacular images of the distant universe. A view of a tiny part of the sky reveals many well-formed spiral galaxies, some over thirteen billion light-years away. These observations challenge the standard Big Bang Model (BBM), which posits that early galaxies should be small and lack well-formed spiral structures. JWST’s findings are prompting scientists to reconsider the BBM in its current form. Throughout the history of science, technological advancements have led to new results that challenge established theories, sometimes necessitating their modification or even abandonment. This happened with the geocentric model four centuries ago, and the BBM may face a similar reevaluation as JWST provides more images of the distant universe. In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of Variable Gravitational Constant, later incorporating the concept of Continuous Creation of Matter in the universe. The Hypersphere World-Universe Model (WUM) builds on these ideas, introducing a distinct mechanism for matter creation. WUM is proposed as an alternative to the prevailing BBM. Its main advantage is the elimination of the “Initial Singularity” and “Inflation”, offering explanations for many unresolved problems in Cosmology. WUM is presented as a natural extension of Classical Physics with the potential to bring about a significant transformation in both Cosmology and Classical Physics. Considering JWST’s discoveries, WUM’s achievements, and 87 years of Dirac’s proposals, it is time to initiate a fundamental transformation in Astronomy, Cosmology, and Classical Physics. The present paper is a continuation of the published article “JWST Discoveries—Confirmation of World-Universe Model Predictions” [2] and a summary of the paper “Hypersphere World-Universe Model: Digest of Presentations John Chappell Natural Philosophy Society” [3]. Many results obtained there are quoted in the current work without full justification;interested readers are encouraged to view the referenced papers for detailed explanations.
文摘It is an American tradition to name the guiding principles of any new foreign policy as a president’s doctrine during his incumbency.Realizing that it was facing epochal global changes and needed adjustments in its foreign policy to face evolving new challenges,the Joe Biden administration embarked on a comprehensive and significant adjustment to American foreign policy under the guidance of new strategic concepts.
文摘The following contribution aims to interpret the methodical device of Husserl’s epochéin light of the concept of breakthrough.Since the epochéis a theoretical device directed towards the suspension of the natural attitude,I will first attempt to define the concept of natural attitude.Subsequently,I will seek to understand the rich meaning of the concept of epoché.Finally,I will explore how this element is related to the concept of breakthrough.In other words,I will endeavour to clarify how the epochédetermines a breakthrough of the natural attitude,which is not to be understood as“annihilation”or“destruction”but as a traversal.
文摘The Lagrange-Jacobi equation is one of the significant tools for the qualitative analysis of the n-body problem. In this paper, we present the modified Lagrange-Jacobi equation by introducing a new formal parameter of n-body problem and propose its application to the dynamical study of clusters of galaxies which are large-scale structures of Universe. We put forward and study a new dynamical problem which is related to the stage of relaxation of observed stationary clusters of galaxies which are considered as a non-equilibrium systems of point masses. We also received the analytical form of the potential energy of such galaxy clusters. One of the applications of this analytical form is the analytical relation between the time of setting up the virial equilibrium in relaxing clusters of galaxies and the cosmological epoch T.
文摘This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy law by assuming h<sup>2</sup> instead, as still do ISO-ASTM 14,577 standards. This law is valid for all materials and all “one-point indentation” temperatures. It detects initial surface effects and phase-transition kink-unsteadiness. Why is that important? The mechanically induced phase-transitions form polymorph interfaces with increased risk of crash nucleation for example at the pickle forks of airliners. After our published crashing risk, as nucleated within microscopic polymorph-interfaces via pre-cracks, had finally appeared (we presented microscopic images (5000×) from a model system), 550 airliners were all at once grounded for 18 months due to such microscopic pre-cracks at their pickle forks (connection device for wing to body). These pre-cracks at phase-transition interfaces were previously not complained at the (semi)yearlycheckups of all airliners. But materials with higher compliance against phase- transitions must be developed for everybody’s safety, most easily by checking with nanoindentations, using their physically correct analyses. Unfortunately, non-physical analyses, as based on the after all incredible exponent 2 on h for the F<sub>N</sub> versus h loading curve are still enforced by ISO-ASTM standards that cannot detect phase-transitions. These standards propagate that all of the force, as applied to the penetrating cone or pyramid shall be used for the depth formation, but not also in part for the pressure to the indenter environment. However, the remaining part of pressure (that was not consumed for migrations, etc.) is always used for the elastic modulus detection routine. That severely violates the energy-law! Furthermore, the now physically analyzed published loading curves contain the phase-transition onsets and energies information, because these old-fashioned authors innocently (?) published (of course correct) experimental loading curves. These follow as ever the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> relation that does not violate the energy law. Nevertheless, the old-fashioned authors stubbornly assume h<sup>2</sup>instead of h<sup>3/2</sup> as still do ISO-ASTM 14,577 standards according to an Oliver-Pharr publication of 1992 and textbooks. The present work contributes to understanding the temperature dependence of phase-transitions under mechanical load, not only for aviation and space flights, which is important. The physical calculations use exclusively regressions and pure algebra (no iterations, no fittings, and no simulations) in a series of straightforward steps by correcting for unavoidable initial effects from the axis cuts of the linear branches from the above equation exhibiting sharp kink unsteadiness at the onset of phase transitions. The test loading curves are from Molybdenum and Al 7075 alloy. The valid published loading curves strictly follow the F<sub>N</sub> = k-h<sup>3/2</sup> relation. Full applied work, conversion work, and conversion work per depth unit show reliable overall comparable order of magnitude values at temperature increase by 150°C (Al 7075) and 980°C (Mo) when also considering different physical hardnesses and penetration depths. It turns out how much the normalized endothermic phase-transition energy decreases upon temperature increase. For the only known 1000°C indentation we provide reason that the presented loading curves changes are only to a minor degree caused by the thermal expansion. The results with Al 7075 up to 170°C are successfully compared. Al 7075 alloy is also checked by indentation with liquid nitrogen cooling (77 K). It gives two endothermic and one very prominent exothermic phase transition with particularly high normalized phase-transition energy. This indentation loading curve at liquid nitrogen temperature reveals epochal novelties. The energy requiring endothermic phase transitions (already seen at 20°C and above) at 77 K is shortly after the start of the second polymorph (sharply at 19.53 N loading force) followed by a strongly exothermic phase-transition by producing (that is losing) energy-content. Both processes at 77 K are totally unexpected. The produced energy per depth unit is much higher energy than the one required for the previous endothermic conversions. This exothermic phase-transition profits from the inability to provide further energy for the formation of the third polymorph as endothermic obtained at 70°C and above. That is only possible because the very cold crystal can no longer support endothermic events but supports exothermic ones. Both endothermic and exothermic phase-transitions at 77 K under load are unprecedented and were not expected before. While the energetic support at 77 K for endothermic processes under mechanical load is unusual but still understandable (there are also further means to produce lower temperatures). But strongly exothermicphase-transition under mechanical load for the production of new modification with negative energy content (less than the energy content of the ambient polymorph) at very low temperature is an epochal event here on earth. It leads to new global thinking and promises important new applications. The energy content of strongly exothermic transformed material is less than the thermodynamic standard zero energy-content on earth. And it can only be reached when there is no possibility left to produce an endothermic phase-transition. Such less than zero-energy-content materials should be isolated, using appropriate equipment. Their properties must be investigated by chemists, crystallographers, and physicists for cosmological reasons. It could be that such materials will require cooling despite their low energy content (higher stability!) and not survive at ambient temperatures and pressures on earth, but only because we do not know of such negative-energy-content materials with our arbitrary thermodynamic standard zeros on earth. At first one will have to study how far we can go up with temperature for keeping them stable. Thus, the apparently never before considered unprecedented result opens up new thinking for the search of new polymorphs that can, of course, not be reached by heating. Various further applications including cosmology and space flight explorations are profiting from it.