An adhesive of the SiBCN ceramic was synthesized through the polymer derived ceramics(PDC)route.Meanwhile with higher adhesion strength and simpler process condition,the polyborosilazane(PSNB)was modified by E-44 epox...An adhesive of the SiBCN ceramic was synthesized through the polymer derived ceramics(PDC)route.Meanwhile with higher adhesion strength and simpler process condition,the polyborosilazane(PSNB)was modified by E-44 epoxy resin.The E-44 epoxy resin was used to promote the oxidation process of SiBCN,in other words,to produce more amount of SiO2-B2O3 glasses.The phase composition,elemental analysis,chemical bonds and microstructure were investigated by using X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and scanning electron microscope(SEM)measurements.The E-44 modified adhesives were cured at 120℃in air for 2 h,and were pyrolyzed at 1200,1400,and 1500℃for 2 h in air,respectively.The highest adhesion strength of the modified adhesive was up to 5.33,12.23,and 12.50 MPa after being heat treated at 1200,1400,and 1500℃,respectively.Finally,we proposed an adhesion model and revealed the adhesion mechanism of SiBCN ceramic.展开更多
The critical parameters of electron beam to cure the epoxy resin E-44 were studied. The initiating efficiency of every photoinitiator increases with the increase of the absorbed dose. Diphenyl iodonium hexafluoroantim...The critical parameters of electron beam to cure the epoxy resin E-44 were studied. The initiating efficiency of every photoinitiator increases with the increase of the absorbed dose. Diphenyl iodonium hexafluoroantimonate being the photoinitiator has a higher initiating efficiency, whose optimal quantity is 3%. The curing degree of the system is improved continuously with the increments of the photoinitiator content when the absorbed dose and the dose rate are fixed. The curing degree increases with raising dose rate obviously when the absorbed dose are fixed.展开更多
基金Funded by the Research Fund of the National Key Research and Development Program of China(No.2017YFB0703200)the State Key Laboratory of Solidification Processing(NWPU),China(No.135-QP-2015)the Fundamental Research Funds for the Central Universities(No.3102017zy058).
文摘An adhesive of the SiBCN ceramic was synthesized through the polymer derived ceramics(PDC)route.Meanwhile with higher adhesion strength and simpler process condition,the polyborosilazane(PSNB)was modified by E-44 epoxy resin.The E-44 epoxy resin was used to promote the oxidation process of SiBCN,in other words,to produce more amount of SiO2-B2O3 glasses.The phase composition,elemental analysis,chemical bonds and microstructure were investigated by using X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and scanning electron microscope(SEM)measurements.The E-44 modified adhesives were cured at 120℃in air for 2 h,and were pyrolyzed at 1200,1400,and 1500℃for 2 h in air,respectively.The highest adhesion strength of the modified adhesive was up to 5.33,12.23,and 12.50 MPa after being heat treated at 1200,1400,and 1500℃,respectively.Finally,we proposed an adhesion model and revealed the adhesion mechanism of SiBCN ceramic.
文摘The critical parameters of electron beam to cure the epoxy resin E-44 were studied. The initiating efficiency of every photoinitiator increases with the increase of the absorbed dose. Diphenyl iodonium hexafluoroantimonate being the photoinitiator has a higher initiating efficiency, whose optimal quantity is 3%. The curing degree of the system is improved continuously with the increments of the photoinitiator content when the absorbed dose and the dose rate are fixed. The curing degree increases with raising dose rate obviously when the absorbed dose are fixed.