The deflagration-to-detonation transitions (DDTs) for clouds of spherical aluminum dust (SAD) mixed with air or epoxypropane mist (EPM) and air were investigated in a 29.6-m-long experimental tube of 199 mm in diamete...The deflagration-to-detonation transitions (DDTs) for clouds of spherical aluminum dust (SAD) mixed with air or epoxypropane mist (EPM) and air were investigated in a 29.6-m-long experimental tube of 199 mm in diameter. The clouds formed through the injection of SAD and SAD/liquid epoxypropane samples into the experimental tube. Explosions of the SAD/air mixture were initiated using a 7-m-long EPM/air cloud explosion ignited by a 40-J electric spark. Explosions in SAD/EPM/air clouds were initiated using a 1.2-m EPM/air cloud explosion ignited by a 40-J electric spark initiated using a 40-J electric spark. Self-sustained detonation waves formed in SAD/EPM/air mixtures instead of in SAD/air mixtures. The stages and characteristics of the DDT process in SAD/air and SAD/EPM/air mixtures were studied and analyzed. Self-sustained detonation was evident from the existence of a transverse wave and a cellular structure. Moreover, a retonation wave formed during the DDT process in SAD/EPM/air clouds.展开更多
The diffusion of an antifogging agent, EO/PO (epoxyethane/epoxypropane) copolymer, through apolyethylene PE film was studied using a simple experimental system. It was found that the temperature, concentration of anti...The diffusion of an antifogging agent, EO/PO (epoxyethane/epoxypropane) copolymer, through apolyethylene PE film was studied using a simple experimental system. It was found that the temperature, concentration of antifogging agent, crystallinity of PE film and film thickness affect the diffusion process.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10772032)the Foundation of State Key Lab of Explosion Science and Technology (Grant Nos. ZDKT08-2-6, YBKT09-1)the National Basic Research Program of China (Grant No. 2011CB706900)
文摘The deflagration-to-detonation transitions (DDTs) for clouds of spherical aluminum dust (SAD) mixed with air or epoxypropane mist (EPM) and air were investigated in a 29.6-m-long experimental tube of 199 mm in diameter. The clouds formed through the injection of SAD and SAD/liquid epoxypropane samples into the experimental tube. Explosions of the SAD/air mixture were initiated using a 7-m-long EPM/air cloud explosion ignited by a 40-J electric spark. Explosions in SAD/EPM/air clouds were initiated using a 1.2-m EPM/air cloud explosion ignited by a 40-J electric spark initiated using a 40-J electric spark. Self-sustained detonation waves formed in SAD/EPM/air mixtures instead of in SAD/air mixtures. The stages and characteristics of the DDT process in SAD/air and SAD/EPM/air mixtures were studied and analyzed. Self-sustained detonation was evident from the existence of a transverse wave and a cellular structure. Moreover, a retonation wave formed during the DDT process in SAD/EPM/air clouds.
基金Supported by the National Natural Science Foundation of China (No. 39830230).
文摘The diffusion of an antifogging agent, EO/PO (epoxyethane/epoxypropane) copolymer, through apolyethylene PE film was studied using a simple experimental system. It was found that the temperature, concentration of antifogging agent, crystallinity of PE film and film thickness affect the diffusion process.