RGD-containing peptide ( K16-GRGDSPC) , characterized as non-viral gene vectors, was fabricated to modify the surface of PLGA-[ASP- PEG] matrix, which offered the foundation for gene transfer with porous matrix of g...RGD-containing peptide ( K16-GRGDSPC) , characterized as non-viral gene vectors, was fabricated to modify the surface of PLGA-[ASP- PEG] matrix, which offered the foundation for gene transfer with porous matrix of gene activated later. Peptide was synthesized and matrix was executed into chips A, B and chip C. Chip C was regarded as control. Chips A and B were reacted with cross-linker. Then chip A was reacted with peptide. MS and HPLC were ased to detect the .14W and purity of peptide. Sulphur, existing on the surface of biomaterials, was detected by XPS. The purity of un-reacted peptide in residual solution was detected by a spectrophotometer. HPLC shows that the peptide purity was 94%- 95% , and MS shows that the MW was 2 741. 3307. XPS reveals that the binding energy of sulphur was 164 eV and the ratio of carbon to sulphur (C/S) was 99. 746 :0. 1014 in reacted chip A. The binding energy of sulphur in reacted chip B was 164 eV and 162 eV, C/ S was 99.574:0.4255, aM there was no sulphur in chip C. Peptide was manufactured and linked to the surface of biomimetic and 3-D matrix, which offered the possibilities for gene transfer and tissue engineering with this new kind of non-viral gene vector.展开更多
The arginine-glycine-aspartic (RGD) acid peptide was grafted to the surface of apatitewollastonite (AW) ceramic in an effort to improve its cell adhesion, proliferation and osteoinduction. RGD peptide was covalent...The arginine-glycine-aspartic (RGD) acid peptide was grafted to the surface of apatitewollastonite (AW) ceramic in an effort to improve its cell adhesion, proliferation and osteoinduction. RGD peptide was covalently immobilized onto the surface of AW ceramic via the synthetic cross linker AA.PTS-E and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). The modified surfaces were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The chemical analysis indicated that RGD peptide had been immobilized onto the AW surface successfully. The growth of osteoblast-like cells (MG63) showed that modifying the AW surface with RGD peptide enhanced the cell adhesion and proliferation. And the histological evaluation of RGD-AW showed that the bone regeneration and remodeling process were significantly enhanced compared to the original AW ceramics after 2, 4 and 8 weeks implantation in rabbit's femoral condyles.展开更多
Antiplatelet aggregation effects of YIGSK, RGDS, RGDV, RGDF, YIGSKRGDS, YIGSKRGDV and YIGSKRGDF were observed. By comparing their activities it was found that by coupling YIGSK and RGD containing peptides the antiplat...Antiplatelet aggregation effects of YIGSK, RGDS, RGDV, RGDF, YIGSKRGDS, YIGSKRGDV and YIGSKRGDF were observed. By comparing their activities it was found that by coupling YIGSK and RGD containing peptides the antiplatelet aggregation effects of some of the compounds may be enhanced.展开更多
A 23 amino acid, bifunctional integrin-targeted synthetic oligopeptide was evaluated for ex vivo gene delivery to rabbit bone marrow stromal cells (BMSCs). Synthesis of the peptide (K)16GRGDSPC was performed on a ...A 23 amino acid, bifunctional integrin-targeted synthetic oligopeptide was evaluated for ex vivo gene delivery to rabbit bone marrow stromal cells (BMSCs). Synthesis of the peptide (K)16GRGDSPC was performed on a solid-phase batch peptide synthesizer. BMSCs were transfected with plasmid DNA coding for luciferase by (K)j6GRGDSPC and the transfection efficiency was assayed. The influences of chloroquine and polyethyleneimine on the transfection efficiency were also examined. The target specificity of (K)16GRGDSPC to mediate exogenous gene into BMSCs was analyzed using cell attachment test and gene delivery inhibition test. The results showed that the transfection efficiency of the oligopeptide vector was lower than that of Lipofectamine. But in the presence of endosomal buffer chloroquine or endosomal disrupting agent polyethyleneimine, the transfection efficiency of the vector was greatly enhanced. In addition, RGD-containing peptides inhibited BMSCs' attachment to the 96-well plates pretreated with fibronectin or vitronecfin and significantly decreased the transfection efficiency of the oligopeptide vector. These studies demonstrated that oligopeptide (K)16GRGDSPC was an ideal novel targeted non-viral gene delivery vector, which was easy to be synthesized, high efficient and low cytotoxicity. The vector could effectively deliver exogenous gene into rat BMSCs.展开更多
Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.T...Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.The proliferation of a large number of astrocytes results in the formation of glial scar.展开更多
Some novel peptide dendrimers bearing four amino acids, GD and RGD peptides on their surface were synthesized from tetrakis[(carboxyethoxy)methyl]-methane using DCC method.
Porcine aortic valves were decellularized with trypsinase/EDTA and Triton-100. With the help of a coupling reagent Sulfo-LC-SPDP, the biological valve scaffolds were immobilized with one of RGD (arginine-glycine-aspa...Porcine aortic valves were decellularized with trypsinase/EDTA and Triton-100. With the help of a coupling reagent Sulfo-LC-SPDP, the biological valve scaffolds were immobilized with one of RGD (arginine-glycine-aspartic acid) containing peptides, called GRGDSPC peptide. Myofibroblasts harvested from rats were seeded onto them. Based on the spectra of X-ray photoelectron spectroscopy, we could find conjugation of GRGDSPC peptide and the scaffolds. Cell count by both microscopy and MTT assay showed that myofibroblasts were easier to adhere to the modified scaffolds. It is proved that it is feasible to immobilize RGD peptides onto decellularized valve scaffolds, and effective to promote cell adhesion, which is beneficial for constructing tissue engineering heart valves in vitro.展开更多
文摘RGD-containing peptide ( K16-GRGDSPC) , characterized as non-viral gene vectors, was fabricated to modify the surface of PLGA-[ASP- PEG] matrix, which offered the foundation for gene transfer with porous matrix of gene activated later. Peptide was synthesized and matrix was executed into chips A, B and chip C. Chip C was regarded as control. Chips A and B were reacted with cross-linker. Then chip A was reacted with peptide. MS and HPLC were ased to detect the .14W and purity of peptide. Sulphur, existing on the surface of biomaterials, was detected by XPS. The purity of un-reacted peptide in residual solution was detected by a spectrophotometer. HPLC shows that the peptide purity was 94%- 95% , and MS shows that the MW was 2 741. 3307. XPS reveals that the binding energy of sulphur was 164 eV and the ratio of carbon to sulphur (C/S) was 99. 746 :0. 1014 in reacted chip A. The binding energy of sulphur in reacted chip B was 164 eV and 162 eV, C/ S was 99.574:0.4255, aM there was no sulphur in chip C. Peptide was manufactured and linked to the surface of biomimetic and 3-D matrix, which offered the possibilities for gene transfer and tissue engineering with this new kind of non-viral gene vector.
基金Supported in part by the Specialized Research Fund for theDoctoral Program of Higher Education of China(No.20060610024)
文摘The arginine-glycine-aspartic (RGD) acid peptide was grafted to the surface of apatitewollastonite (AW) ceramic in an effort to improve its cell adhesion, proliferation and osteoinduction. RGD peptide was covalently immobilized onto the surface of AW ceramic via the synthetic cross linker AA.PTS-E and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). The modified surfaces were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The chemical analysis indicated that RGD peptide had been immobilized onto the AW surface successfully. The growth of osteoblast-like cells (MG63) showed that modifying the AW surface with RGD peptide enhanced the cell adhesion and proliferation. And the histological evaluation of RGD-AW showed that the bone regeneration and remodeling process were significantly enhanced compared to the original AW ceramics after 2, 4 and 8 weeks implantation in rabbit's femoral condyles.
文摘Antiplatelet aggregation effects of YIGSK, RGDS, RGDV, RGDF, YIGSKRGDS, YIGSKRGDV and YIGSKRGDF were observed. By comparing their activities it was found that by coupling YIGSK and RGD containing peptides the antiplatelet aggregation effects of some of the compounds may be enhanced.
基金This project was supported by grants from National Natural Sciences Foundation of China (No. 30200063, 30470483).
文摘A 23 amino acid, bifunctional integrin-targeted synthetic oligopeptide was evaluated for ex vivo gene delivery to rabbit bone marrow stromal cells (BMSCs). Synthesis of the peptide (K)16GRGDSPC was performed on a solid-phase batch peptide synthesizer. BMSCs were transfected with plasmid DNA coding for luciferase by (K)j6GRGDSPC and the transfection efficiency was assayed. The influences of chloroquine and polyethyleneimine on the transfection efficiency were also examined. The target specificity of (K)16GRGDSPC to mediate exogenous gene into BMSCs was analyzed using cell attachment test and gene delivery inhibition test. The results showed that the transfection efficiency of the oligopeptide vector was lower than that of Lipofectamine. But in the presence of endosomal buffer chloroquine or endosomal disrupting agent polyethyleneimine, the transfection efficiency of the vector was greatly enhanced. In addition, RGD-containing peptides inhibited BMSCs' attachment to the 96-well plates pretreated with fibronectin or vitronecfin and significantly decreased the transfection efficiency of the oligopeptide vector. These studies demonstrated that oligopeptide (K)16GRGDSPC was an ideal novel targeted non-viral gene delivery vector, which was easy to be synthesized, high efficient and low cytotoxicity. The vector could effectively deliver exogenous gene into rat BMSCs.
基金supported by National Basic Research Program of China(973 Program,2014CB542205)Hong Kong RGC grant+2 种基金Hong Kong Health and Medical Research Fundfoundation for Distinguished Young Talents in Higher Education of Guangdong(Yq2013023)the Leading Talents of Guangdong Province(87014002)
文摘Following injury in central nervous system(CNS),there are pathological changes in the injured region,which include neuronal death,axonal damage and demyelination,inflammatory response and activation of glial cells.The proliferation of a large number of astrocytes results in the formation of glial scar.
基金the financial support of the National Natural Science Foundation of China (Project No. 20472055).
文摘Some novel peptide dendrimers bearing four amino acids, GD and RGD peptides on their surface were synthesized from tetrakis[(carboxyethoxy)methyl]-methane using DCC method.
基金the National Natural Science Foundation of China(No.30371414,30571839,30600608)
文摘Porcine aortic valves were decellularized with trypsinase/EDTA and Triton-100. With the help of a coupling reagent Sulfo-LC-SPDP, the biological valve scaffolds were immobilized with one of RGD (arginine-glycine-aspartic acid) containing peptides, called GRGDSPC peptide. Myofibroblasts harvested from rats were seeded onto them. Based on the spectra of X-ray photoelectron spectroscopy, we could find conjugation of GRGDSPC peptide and the scaffolds. Cell count by both microscopy and MTT assay showed that myofibroblasts were easier to adhere to the modified scaffolds. It is proved that it is feasible to immobilize RGD peptides onto decellularized valve scaffolds, and effective to promote cell adhesion, which is beneficial for constructing tissue engineering heart valves in vitro.