AIM: To investigate the role of nuclear factor κB(NF-κB) in the regulation of Epstein-Barr virus(EBV) latent membrane protein 1(LMP1) in EBV transformed cells. METHODS: LMP1 expression was examined in EBV transforme...AIM: To investigate the role of nuclear factor κB(NF-κB) in the regulation of Epstein-Barr virus(EBV) latent membrane protein 1(LMP1) in EBV transformed cells. METHODS: LMP1 expression was examined in EBV transformed human B lymphocytes with modulation of NF-κB activity. RESULTS: EBV infection is associated with several human cancers. EBV LMP1 is required for efficient transformation of adult primary B cells in vitro, and is expressed in several pathogenic stages of EBVassociated cancers. Regulation of EBV LMP1 involves both viral and cellular factors. LMP1 activates NF-κB signaling pathway that is a part of the EBV transformation program. However, the relation between NF-κB and LMP1 expression is not well established yet. In this report, we found that blocking the NF-κB activity by Inhibitor of κB stimulated LMP1 expression, while the overexpression of NF-κB repressed LMP1 expression in EBV-transformed IB4 cells. In addition, LMP1 repressed its own promoter activities in reporter assays, and the repression was associated with the activation of NF-κB. Moreover, NF-κB alone is sufficient to repress LMP1 promoter activities. CONCLUSION: Our data suggest LMP1 may repress its own expression through NF-κB in EBV transformed cells and shed a light on LMP1 regulation during EBV transformation.展开更多
ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investiga...ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic vaccines against EBV associated malignancies. MethodsMature DC were transfected with EBV LMP2A recombinant vaccinia virus (rVV LMP2A). Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA DR was measured by fluorescence activated cell sorter (FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions (MLR). ResultsLMP2A protein was highly expressed (66.1 %) in DC after the transfection of rVV LMP2A. No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection. Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells. ConclusionRecombinant vaccinia virus was an effective and non perturbing vector to mediate the transfection of LMP2A into DC. The functions of mature DC were not affected significantly by the transfection of Vac LMP2A. This study could provide evidence for the further immunotherapy of EBV associated malignancies,e.g. nasopharyngeal carcinoma (NPC).展开更多
Viruses have been shown to be responsible for 10%-15% of cancer cases. Epstein-Barr virus(EBV) is the first virus to be associated with human malignancies. EBV can cause many cancers, including Burkett's lymphoma,...Viruses have been shown to be responsible for 10%-15% of cancer cases. Epstein-Barr virus(EBV) is the first virus to be associated with human malignancies. EBV can cause many cancers, including Burkett's lymphoma, Hodgkin's lymphoma, post-transplant lymphoproliferative disorders, nasopharyngeal carcinoma and gastric cancer. Evidence shows that phosphoinositide 3-kinase/protein kinase B(PI3K/Akt) plays a key role in EBV-induced malignancies. The main EBV oncoproteins latent membrane proteins(LMP) 1 and LMP2 A can activate the PI3K/Akt pathway, which, in turn, affects cell survival, apoptosis, proliferation and genomic instability via its downstream target proteins to cause cancer. It has also been demonstrated that the activation of the PI3K/Akt pathway can result in drug resistance to chemotherapy. Thus, the inhibition of this pathway can increase the therapeutic efficacy of EBV-associated cancers. For example, PI3 K inhibitor Ly294002 has been shown to increase the effect of 5-fluorouracil in an EBV-associated gastric cancer cell line. At present, dual inhibitors of PI3 K and its downstream target mammalian target of rapamycin have been used in clinical trials and may be included in treatment regimens for EBV-associated cancers.展开更多
Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) may trigger the transcription factor AP-1 including c-Jun and c-fos. In this report, using a Tet-on LMP1 HNE2 cell line which is a dual-stable LMP1 int...Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) may trigger the transcription factor AP-1 including c-Jun and c-fos. In this report, using a Tet-on LMP1 HNE2 cell line which is a dual-stable LMP1 integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 in which could be regulated by the Tet-on system, we show that Jun B can efficiently form a new heterodimeric complex with the c-Jun protein under the regulation of LMP1, phosphorylation of c-Jun (ser 63, ser 73) and Jun B is involved in the process of the new heterodimeric formation. We also find that this heterodimeric form can bind to the AP-1 consensus sequence. Transfection studies suggest that JNK interaction protein (JIP) could inhibit the heterodimer formation of c-Jun and Jun B through blocking the AP-1 signaling pathway triggered by LMP1. The interaction and function between c-Jun protein and Jun B protein increase the repertoire of possible regulatory complexes by LMP1 that could play an important role in the regulation of transcription of specific cellular genes in the process of genesis of nasopharyngeal carcinoma.展开更多
Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV encoded proteins, and also it has always been the core of the oncogenic mechanism of EBV. Tradit...Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV encoded proteins, and also it has always been the core of the oncogenic mechanism of EBV. Traditional receptor theory demonstrates that cell surface receptors exert biological functions on the membrane, which neither enter into the nucleus nor directly affect the transcription of the target genes. But, advanced studies on nuclear transloca-tion of the epidermal growth factor receptor (EGFR) family have greatly developed our knowl-edge of the biological function of cell surface receptors. In this study, we used Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1 integrated NPC cell line and the ex-pression of LMP1 in which could be regulated by Tet system. We found that LMP1 could regulate the nuclear translocation of EGFR in a dose-dependent manner from both quantitative and qualitative levels through the Western blot analysis and the immunofluorescent analysis with a laser scanning confocal microscope. We further demonstrated that the nuclear localization se-quence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation, and the nuclear accumulation of EGFR regulated by LMP1 was in a ligand-independent manner. These findings provide a novel view that the regulation of LMP1 on the nuclear translocation of EGFR is critical for the process of nasopharyngeal carcinoma.展开更多
Dear Editor,Epstein-Barr virus(EBV,also termed human herpesvirus-4)was the first identified human tumor virus.Since its discovery in 1964,studies have shown that EBV infects over 90%of all people by the time they are ...Dear Editor,Epstein-Barr virus(EBV,also termed human herpesvirus-4)was the first identified human tumor virus.Since its discovery in 1964,studies have shown that EBV infects over 90%of all people by the time they are adults(Williams and Crawford 2006).EBV infection can result in mucocutaneous and systemic diseases,ranging from selflimited illnesses to aggressive malignancies,including B cell Hodgkin lymphoma and nasopharyngeal carcinoma.In vitro,EBV transforms resting B cells into proliferating blast cells(Pope et al.1968).展开更多
Epstein-Barr virus (EBV) associated nasopharyngeal carcinoma (NPC) is a high incidence tumor in Southeast Asia. Among EBV encoded proteins, latent membrane protein 2A (LMP2A) is an important antigen for T cell t...Epstein-Barr virus (EBV) associated nasopharyngeal carcinoma (NPC) is a high incidence tumor in Southeast Asia. Among EBV encoded proteins, latent membrane protein 2A (LMP2A) is an important antigen for T cell therapy of EBV. In this study, we predicted six HLA-A2 restricted CTL candidate epitopes of LMP2A by SYFPEITHI, NetMHC and MHCPred methods combined with the polynomial method. Subsequently, biological functions of these peptides were tested by experiments in vitro. In ELISPOT assay, the positive response of the LMP2A specific CTL stimulated by three (LMP2A264.272, LMP2A426-434 and LMP2A3s6.364) of six peptides respectively showed that the numbers of spots forming cells (SFC) ranged from 55.7 to 80.6 SFC/5 x 104 CO8^+ T cells and the responding index (RI) ranged from 5.4 to 7. These three epitope-specific CTLs could effectively kill specific HLA-A2- expressing target cells. As a result, LMP2A264.272 (QLSPLLGAV), LMP2A426.434 (CLGGLLTMV) and LMP2A356.364 (FLYALALLL) were identified as LMP2A-specific CD8^+ T-cell epitopes. It would be useful to clarify immune response toward EBV and to develop a vaccine against EBV-correlative NPC.展开更多
Epstein-Barr virus (EBV) is prevalent throughout the world and is associated with several malignant diseases in humans. Latent membrane protein 2 (LMP2) of EBV plays a crucial role in the pathogenesis of EBV-assoc...Epstein-Barr virus (EBV) is prevalent throughout the world and is associated with several malignant diseases in humans. Latent membrane protein 2 (LMP2) of EBV plays a crucial role in the pathogenesis of EBV-associated tumors; therefore, LMP2 has been considered to be a potential immunodiagnostic and immunotherapeutic target. A multi-epitope-based antigen is a promising option for therapeutic vaccines and diagnoses of such malignancies. In this study, we systematically screened cytotoxic T lymphocyte (CTL), helper T cell (Th) and B-cell epitopes within EBV-LMP2 using bioinformatics. Based on the screen, two peptides rich in overlapping epitopes of both T cells and B cells were selected to construct a plasmid containing the sequence for a chimeric multi-epitope protein referred to as EBV-LMP2m, which is composed of LMP2aa195-232 and LMP2aa419-436. The EBV-LMP2m protein was expressed in E. coil BL21 (DE3) after prokaryotic codon optimization. Inoculation of the purified chimeric antigen in BALB/c mice induced not only high levels of specific IgG in the serum and secretory IgA in the vaginal mucus but also a specific CTL response. By using purified EBV-LMP2m as an antigen, the presence of specific IgG in the serum specimens of 202 nasopharyngeal carcinoma (NPC) patients was effectively detected with 52.84% sensitivity and 95.40% specificity, which represents an improvement over the traditional detection method based on VCA-IgA (60.53% sensitivity and 76.86% specificity). The above results indicate that EBV-LMP2m may be used not only as a potential target antigen for EBV-associated tumors but also a diagnostic agent for NPC patients.展开更多
基金Supported by Grants from the NIH CA138213,RR15635Department of Defense W81XWH-12-1-0225(Luwen Zhang)Qianli Wang was partially supported by Undergraduate Creative Activities and Research Experiences and Beckman Scholars Program
文摘AIM: To investigate the role of nuclear factor κB(NF-κB) in the regulation of Epstein-Barr virus(EBV) latent membrane protein 1(LMP1) in EBV transformed cells. METHODS: LMP1 expression was examined in EBV transformed human B lymphocytes with modulation of NF-κB activity. RESULTS: EBV infection is associated with several human cancers. EBV LMP1 is required for efficient transformation of adult primary B cells in vitro, and is expressed in several pathogenic stages of EBVassociated cancers. Regulation of EBV LMP1 involves both viral and cellular factors. LMP1 activates NF-κB signaling pathway that is a part of the EBV transformation program. However, the relation between NF-κB and LMP1 expression is not well established yet. In this report, we found that blocking the NF-κB activity by Inhibitor of κB stimulated LMP1 expression, while the overexpression of NF-κB repressed LMP1 expression in EBV-transformed IB4 cells. In addition, LMP1 repressed its own promoter activities in reporter assays, and the repression was associated with the activation of NF-κB. Moreover, NF-κB alone is sufficient to repress LMP1 promoter activities. CONCLUSION: Our data suggest LMP1 may repress its own expression through NF-κB in EBV transformed cells and shed a light on LMP1 regulation during EBV transformation.
基金This paper is supported by grant from the National Natural Science Foundation of China(No.30 1 70 880 )
文摘ObjectiveTo study the effects of dendritic cells (DC) transfected with recombinant vaccinia virus encoding Epstein Barr virus (EBV) latent membrane protein 2A(LMP2A) gene,and to provide evidence for further investigation on the therapeutic vaccines against EBV associated malignancies. MethodsMature DC were transfected with EBV LMP2A recombinant vaccinia virus (rVV LMP2A). Before and after the transfection,the expression of surface antigens on mature DC including CD1a,CD83,CD40,CD80,HLA DR was measured by fluorescence activated cell sorter (FACS) and the function of DC to stimulate allogeneic T cells proliferation was measured by mixed leukocyte reactions (MLR). ResultsLMP2A protein was highly expressed (66.1 %) in DC after the transfection of rVV LMP2A. No significant changes in the primary surface antigens expression and in the MLR were detected during the transfection. Transfected DC still had strong potential in stimulating the proliferation of allogeneic T cells. ConclusionRecombinant vaccinia virus was an effective and non perturbing vector to mediate the transfection of LMP2A into DC. The functions of mature DC were not affected significantly by the transfection of Vac LMP2A. This study could provide evidence for the further immunotherapy of EBV associated malignancies,e.g. nasopharyngeal carcinoma (NPC).
文摘Viruses have been shown to be responsible for 10%-15% of cancer cases. Epstein-Barr virus(EBV) is the first virus to be associated with human malignancies. EBV can cause many cancers, including Burkett's lymphoma, Hodgkin's lymphoma, post-transplant lymphoproliferative disorders, nasopharyngeal carcinoma and gastric cancer. Evidence shows that phosphoinositide 3-kinase/protein kinase B(PI3K/Akt) plays a key role in EBV-induced malignancies. The main EBV oncoproteins latent membrane proteins(LMP) 1 and LMP2 A can activate the PI3K/Akt pathway, which, in turn, affects cell survival, apoptosis, proliferation and genomic instability via its downstream target proteins to cause cancer. It has also been demonstrated that the activation of the PI3K/Akt pathway can result in drug resistance to chemotherapy. Thus, the inhibition of this pathway can increase the therapeutic efficacy of EBV-associated cancers. For example, PI3 K inhibitor Ly294002 has been shown to increase the effect of 5-fluorouracil in an EBV-associated gastric cancer cell line. At present, dual inhibitors of PI3 K and its downstream target mammalian target of rapamycin have been used in clinical trials and may be included in treatment regimens for EBV-associated cancers.
文摘Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) may trigger the transcription factor AP-1 including c-Jun and c-fos. In this report, using a Tet-on LMP1 HNE2 cell line which is a dual-stable LMP1 integrated nasopharyngeal carcinoma (NPC) cell line and the expression of LMP1 in which could be regulated by the Tet-on system, we show that Jun B can efficiently form a new heterodimeric complex with the c-Jun protein under the regulation of LMP1, phosphorylation of c-Jun (ser 63, ser 73) and Jun B is involved in the process of the new heterodimeric formation. We also find that this heterodimeric form can bind to the AP-1 consensus sequence. Transfection studies suggest that JNK interaction protein (JIP) could inhibit the heterodimer formation of c-Jun and Jun B through blocking the AP-1 signaling pathway triggered by LMP1. The interaction and function between c-Jun protein and Jun B protein increase the repertoire of possible regulatory complexes by LMP1 that could play an important role in the regulation of transcription of specific cellular genes in the process of genesis of nasopharyngeal carcinoma.
基金This work was supported by the National Natural Science Foundation for Distinguished Young Scholar of China(No.3952502)State Key Basic Research Program,Fundamental Investigation on Human Carcinogenesis of China(No.G1998051201)National Natural Science Foundation of China(Grant No.30300407).
文摘Epstein-Barr virus (EBV) encoded latent membrane protein 1 (LMP1) is considered to be the major oncogenic protein of EBV encoded proteins, and also it has always been the core of the oncogenic mechanism of EBV. Traditional receptor theory demonstrates that cell surface receptors exert biological functions on the membrane, which neither enter into the nucleus nor directly affect the transcription of the target genes. But, advanced studies on nuclear transloca-tion of the epidermal growth factor receptor (EGFR) family have greatly developed our knowl-edge of the biological function of cell surface receptors. In this study, we used Tet-on LMP1 HNE2 cell line as a cell model, which is a dual-stable LMP1 integrated NPC cell line and the ex-pression of LMP1 in which could be regulated by Tet system. We found that LMP1 could regulate the nuclear translocation of EGFR in a dose-dependent manner from both quantitative and qualitative levels through the Western blot analysis and the immunofluorescent analysis with a laser scanning confocal microscope. We further demonstrated that the nuclear localization se-quence of EGFR played some roles in the location of the protein within the nucleus under LMP1 regulation, and the nuclear accumulation of EGFR regulated by LMP1 was in a ligand-independent manner. These findings provide a novel view that the regulation of LMP1 on the nuclear translocation of EGFR is critical for the process of nasopharyngeal carcinoma.
基金supported by the National Natural Science Foundation of China (Grant Numbers: 81402542 and 81772166)the scholarship of Pujiang Talents in Shanghai to Fang Wei (Grant Number: 14PJ1405600)
文摘Dear Editor,Epstein-Barr virus(EBV,also termed human herpesvirus-4)was the first identified human tumor virus.Since its discovery in 1964,studies have shown that EBV infects over 90%of all people by the time they are adults(Williams and Crawford 2006).EBV infection can result in mucocutaneous and systemic diseases,ranging from selflimited illnesses to aggressive malignancies,including B cell Hodgkin lymphoma and nasopharyngeal carcinoma.In vitro,EBV transforms resting B cells into proliferating blast cells(Pope et al.1968).
基金supported by the National Nature Science Foundation of China (No.30571715)
文摘Epstein-Barr virus (EBV) associated nasopharyngeal carcinoma (NPC) is a high incidence tumor in Southeast Asia. Among EBV encoded proteins, latent membrane protein 2A (LMP2A) is an important antigen for T cell therapy of EBV. In this study, we predicted six HLA-A2 restricted CTL candidate epitopes of LMP2A by SYFPEITHI, NetMHC and MHCPred methods combined with the polynomial method. Subsequently, biological functions of these peptides were tested by experiments in vitro. In ELISPOT assay, the positive response of the LMP2A specific CTL stimulated by three (LMP2A264.272, LMP2A426-434 and LMP2A3s6.364) of six peptides respectively showed that the numbers of spots forming cells (SFC) ranged from 55.7 to 80.6 SFC/5 x 104 CO8^+ T cells and the responding index (RI) ranged from 5.4 to 7. These three epitope-specific CTLs could effectively kill specific HLA-A2- expressing target cells. As a result, LMP2A264.272 (QLSPLLGAV), LMP2A426.434 (CLGGLLTMV) and LMP2A356.364 (FLYALALLL) were identified as LMP2A-specific CD8^+ T-cell epitopes. It would be useful to clarify immune response toward EBV and to develop a vaccine against EBV-correlative NPC.
基金This work was supported by a grant from the National Natural Science Foundation of China (No: 81372447).
文摘Epstein-Barr virus (EBV) is prevalent throughout the world and is associated with several malignant diseases in humans. Latent membrane protein 2 (LMP2) of EBV plays a crucial role in the pathogenesis of EBV-associated tumors; therefore, LMP2 has been considered to be a potential immunodiagnostic and immunotherapeutic target. A multi-epitope-based antigen is a promising option for therapeutic vaccines and diagnoses of such malignancies. In this study, we systematically screened cytotoxic T lymphocyte (CTL), helper T cell (Th) and B-cell epitopes within EBV-LMP2 using bioinformatics. Based on the screen, two peptides rich in overlapping epitopes of both T cells and B cells were selected to construct a plasmid containing the sequence for a chimeric multi-epitope protein referred to as EBV-LMP2m, which is composed of LMP2aa195-232 and LMP2aa419-436. The EBV-LMP2m protein was expressed in E. coil BL21 (DE3) after prokaryotic codon optimization. Inoculation of the purified chimeric antigen in BALB/c mice induced not only high levels of specific IgG in the serum and secretory IgA in the vaginal mucus but also a specific CTL response. By using purified EBV-LMP2m as an antigen, the presence of specific IgG in the serum specimens of 202 nasopharyngeal carcinoma (NPC) patients was effectively detected with 52.84% sensitivity and 95.40% specificity, which represents an improvement over the traditional detection method based on VCA-IgA (60.53% sensitivity and 76.86% specificity). The above results indicate that EBV-LMP2m may be used not only as a potential target antigen for EBV-associated tumors but also a diagnostic agent for NPC patients.