In this paper,combining Riemann’s method with the fixed point theory effectively,we proved that the migration equation of the moisture in soil with nonlinear initial boundary value problem has unique classical solution.
Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions. However, the mechanisms of soil N2O emission during the freeze-thaw cycling...Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions. However, the mechanisms of soil N2O emission during the freeze-thaw cycling in the field remain unclear. We evaluated N2O emissions and soil biotic and abiotic factors in maize and paddy fields over 20 months in Northeast China, and the structural equation model (SEM) was used to determine which factors affected N2O production during non-growing season. Our results verified that the seasonal freeze-thaw cycles mitigated the available soil nitrogen and carbon limitation during spring thawing period, but simultaneously increased the gaseous N2O-N losses at the annual time scale under field condition. The N2O-N cumulative losses during the non-growing season amounted to 0.71 and 0.55 kg N ha 1 for the paddy and maize fields, respectively, and contributed to 66 and 18% of the annual total. The highest emission rates (199.2- 257.4 μg m-2 h-1) were observed during soil thawing for both fields, but we did not observe an emission peak during soil freezing in early winter. Although the pulses of N2O emission in spring were short-lived (18 d), it resulted in approximately 80% of the non-growing season N2O-N loss. The N2O burst during the spring thawing was triggered by the combined impact of high soil moisture, flush available nitrogen and carbon, and rapid recovery of microbial biomass. SEM analysis indicated that the soil moisture, available substrates including NH4+ and dissolved organic carbon (DOC), and microbial biomass nitrogen (MBN) explained 32, 36, 16 and 51% of the N2O flux variation, respectively, during the non-growing season. Our results suggested that N2O emission during the spring thawing make a vital contribution of the annual nitrogen budget, and the vast seasonally frozen and snow-covered croplands will have high potential to exert a positive feedback on climate change considering the sensitive response of nitrogen biogeochemical cycling to the freeze-thaw disturbance.展开更多
It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant e...It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively.展开更多
This paper studied the basic properties of saline soil at different depths of a sampling site in Da'an, China, through field reconnaissance and laboratory analysis. A series of experiments which comprised the analyse...This paper studied the basic properties of saline soil at different depths of a sampling site in Da'an, China, through field reconnaissance and laboratory analysis. A series of experiments which comprised the analyses of grain size distribution, mineral composition, soil physical properties, soluble salt concent, pH, organic content and cation exchange capacity were conducted. Through these experiments, the distribution rule of each property and their causes are discussed. These results could provide a fundamental base for the study of moisture migration.展开更多
[Objective] The aim was to provide theoretical basis for field moisture conserving irrigation.[Method] With Xiaoyan No.6 as tested material,three different kinds of mulching irrigation treatments were carried out (st...[Objective] The aim was to provide theoretical basis for field moisture conserving irrigation.[Method] With Xiaoyan No.6 as tested material,three different kinds of mulching irrigation treatments were carried out (straw mulching;plastic mulching;PAM control adjustment mulching).With non-mulching treatment as control,moisture conserving effect of different treatments were compared.[Result] The results showed that the water consumption of winter wheat under different soil moisture conservation treatments was low at earlier stage and later stage,but high at mid-stage,which was consistent with the water consumption law of control.There were some differences in terms of consumption intensity because of irrigation schedule and growth condition;soil moisture conservation treatments could restrain ineffective evaporation of soil moisture before anthesis.We also found that the variation of soil moisture at depth of 0-20 cm in PAM and control treatment was dramatic.The soil moisture of the former was lower than the latter at the depth of 0-20 cm,but higher at the depth of 20-50 cm.The difference of soil moisture at the depth of 0-50 cm was significant.[Conclusion] Plastic mulching and straw mulching could restrain evaporation effectively.展开更多
In this paper, an empirical methodology to retrieve bare soil moisture by Synthetic Aperture Radar (SAR) is developed. The model is based on Advanced Integral Equation Model (AIEM). Since AIEM cannot express cross-pol...In this paper, an empirical methodology to retrieve bare soil moisture by Synthetic Aperture Radar (SAR) is developed. The model is based on Advanced Integral Equation Model (AIEM). Since AIEM cannot express cross-polarized backscattering coefficients accurately, we propose an empirical model to retrieve soil moisture for bare farmland only with co-polarized SAR data. The soil moisture can be obtained by solving an equation of HH and VV polarized data without any field measurements. Both simulated and real SAR data are used to validate the accuracy of the model. This method is especially effective in a large area where the surface roughness is difficult to be completely measured.展开更多
A set of perfect constitutive equations including the coupling effects of heat transfer and moisture migration is constructed for freezing soil, after analyzing its thermomechanic properties, in the framework of conti...A set of perfect constitutive equations including the coupling effects of heat transfer and moisture migration is constructed for freezing soil, after analyzing its thermomechanic properties, in the framework of continuum mechanics and mixture theory. By applying the theory, the influence of void ratio on frost heaving is studied after proposing a criterion for formation of layered ice; the results obtained coincide with experimental data available in the literature. The temperature distribution of freezing soil is analyzed, the controlling equation deduced appears to be a nonlinear Burgers type equation with varying boundaries, which presents a theoretic foundation for studying the nonlinear effects of heatmoisture migration in the freezing process.展开更多
Accurate quantification of soil moisture is essential to understand the land surface processes.Soil hydraulic properties influence water transport in soil and thus affect the estimation of soil moisture.However,some s...Accurate quantification of soil moisture is essential to understand the land surface processes.Soil hydraulic properties influence water transport in soil and thus affect the estimation of soil moisture.However,some soil hydraulic properties are only observable at a few field sites.In this study,the effects of soil hydraulic properties on soil moisture estimation are investigated by using the one-dimensional(1-D)Richards equation at ELBARA,which is part of the Maqu monitoring network over the Tibetan Plateau(TP),China.Soil moisture assimilation experiments are then conducted with the unscented weighted ensemble Kalman filter(UWEnKF).The results show that the soil hydraulic properties significantly affect soil moisture simulation.Saturated soil hydraulic conductivity(Ksat)is optimized based on its observations in each soil layer with a genetic algorithm(GA,a widely used optimization method in hydrology),and the 1-D Richards equation performs well using the optimized values.If the range of Ksat for a complete soil profile is known for a particular soil texture(rather than for arbitrary layers within the horizon),optimized Ksat for each soil layer can be obtained by increasing the number of generations in GA,although this increases the computational cost of optimization.UWEnKF performs well with optimized Ksat,and improves the accuracy of soil moisture simulation more than that with calculated Ksat.Sometimes,better soil moisture estimation can be obtained by using optimized saturated volumetric soil moisture content Ksat.In summary,an accurate soil profile can be obtained by using soil moisture assimilation with optimized soil hydraulic properties.展开更多
Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-e...Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-edge equation replaces the traditional linear dry-edge equation, was developed, to reveal the regional drought regime in the dry season. After calculating the correlation coefficient, root-mean-square error, and standard deviation between the iTVDI and observed topsoil moisture at 10 and 20 cm for seven sites, the effectiveness of the new index in depicting topsoil moisture conditions was verified. The drought area indicated by iTVDI mapping was then compared with the drought-affected area reported by the local government. The results indicated that the iTVDI can monitor drought more accurately than the traditional TVDI during the dry season in Yunnan Province. Using iTVDI facilitates drought warning and irrigation scheduling, and the expectation is that this new index can be broadly applied in other areas.展开更多
文摘In this paper,combining Riemann’s method with the fixed point theory effectively,we proved that the migration equation of the moisture in soil with nonlinear initial boundary value problem has unique classical solution.
基金supported by the National Science and Technology Major Project of China (2014ZX07201-009)
文摘Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions. However, the mechanisms of soil N2O emission during the freeze-thaw cycling in the field remain unclear. We evaluated N2O emissions and soil biotic and abiotic factors in maize and paddy fields over 20 months in Northeast China, and the structural equation model (SEM) was used to determine which factors affected N2O production during non-growing season. Our results verified that the seasonal freeze-thaw cycles mitigated the available soil nitrogen and carbon limitation during spring thawing period, but simultaneously increased the gaseous N2O-N losses at the annual time scale under field condition. The N2O-N cumulative losses during the non-growing season amounted to 0.71 and 0.55 kg N ha 1 for the paddy and maize fields, respectively, and contributed to 66 and 18% of the annual total. The highest emission rates (199.2- 257.4 μg m-2 h-1) were observed during soil thawing for both fields, but we did not observe an emission peak during soil freezing in early winter. Although the pulses of N2O emission in spring were short-lived (18 d), it resulted in approximately 80% of the non-growing season N2O-N loss. The N2O burst during the spring thawing was triggered by the combined impact of high soil moisture, flush available nitrogen and carbon, and rapid recovery of microbial biomass. SEM analysis indicated that the soil moisture, available substrates including NH4+ and dissolved organic carbon (DOC), and microbial biomass nitrogen (MBN) explained 32, 36, 16 and 51% of the N2O flux variation, respectively, during the non-growing season. Our results suggested that N2O emission during the spring thawing make a vital contribution of the annual nitrogen budget, and the vast seasonally frozen and snow-covered croplands will have high potential to exert a positive feedback on climate change considering the sensitive response of nitrogen biogeochemical cycling to the freeze-thaw disturbance.
基金supported by the National Natural Science Foundation of China (No. 41371092)the Scientific Research Foundation for Returned Overseas Students+1 种基金the Education Department of Henan Province Science and Technology Research projects (No.14B170007)the doctoral foundation of Henan Polytechnic University (No. 648349)
文摘It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively.
基金supported by the National Natural Science Foundation of China(Nos.41430642 and 41372267)the Research Fund for the Doctoral Program of Higher Education of China(No.20120061110054)
文摘This paper studied the basic properties of saline soil at different depths of a sampling site in Da'an, China, through field reconnaissance and laboratory analysis. A series of experiments which comprised the analyses of grain size distribution, mineral composition, soil physical properties, soluble salt concent, pH, organic content and cation exchange capacity were conducted. Through these experiments, the distribution rule of each property and their causes are discussed. These results could provide a fundamental base for the study of moisture migration.
基金Supported by National 863 Project (2006AA100223)Program of Introducing Talents of Discipline to Hydrology Ecological and Water Security in Arid and Semi Arid Areas(B08039)~~
文摘[Objective] The aim was to provide theoretical basis for field moisture conserving irrigation.[Method] With Xiaoyan No.6 as tested material,three different kinds of mulching irrigation treatments were carried out (straw mulching;plastic mulching;PAM control adjustment mulching).With non-mulching treatment as control,moisture conserving effect of different treatments were compared.[Result] The results showed that the water consumption of winter wheat under different soil moisture conservation treatments was low at earlier stage and later stage,but high at mid-stage,which was consistent with the water consumption law of control.There were some differences in terms of consumption intensity because of irrigation schedule and growth condition;soil moisture conservation treatments could restrain ineffective evaporation of soil moisture before anthesis.We also found that the variation of soil moisture at depth of 0-20 cm in PAM and control treatment was dramatic.The soil moisture of the former was lower than the latter at the depth of 0-20 cm,but higher at the depth of 20-50 cm.The difference of soil moisture at the depth of 0-50 cm was significant.[Conclusion] Plastic mulching and straw mulching could restrain evaporation effectively.
基金Supported by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (NJZZ11069)the Natural Science Foundation of Inner Mongolia Autonomous Region (2011BS0904)
文摘In this paper, an empirical methodology to retrieve bare soil moisture by Synthetic Aperture Radar (SAR) is developed. The model is based on Advanced Integral Equation Model (AIEM). Since AIEM cannot express cross-polarized backscattering coefficients accurately, we propose an empirical model to retrieve soil moisture for bare farmland only with co-polarized SAR data. The soil moisture can be obtained by solving an equation of HH and VV polarized data without any field measurements. Both simulated and real SAR data are used to validate the accuracy of the model. This method is especially effective in a large area where the surface roughness is difficult to be completely measured.
基金Project supported by the National Natural Science Foundation of China (Grant No. 19372022) and the State Key Laboratory of Frozen Soil Engineering (Grant No. 9707).
文摘A set of perfect constitutive equations including the coupling effects of heat transfer and moisture migration is constructed for freezing soil, after analyzing its thermomechanic properties, in the framework of continuum mechanics and mixture theory. By applying the theory, the influence of void ratio on frost heaving is studied after proposing a criterion for formation of layered ice; the results obtained coincide with experimental data available in the literature. The temperature distribution of freezing soil is analyzed, the controlling equation deduced appears to be a nonlinear Burgers type equation with varying boundaries, which presents a theoretic foundation for studying the nonlinear effects of heatmoisture migration in the freezing process.
基金Supported by the National Natural Science Foundation of China(52109036,51709046,51539003,41761134090,41830752,and 42071033)Belt and Road Special Foundation of the State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering of Hohai University(2021490611)+1 种基金Open Foundation of Key Laboratory of Hydrometeorological Disaster Mechanism and Warning of Ministry of Water Resources(HYMED202203,HYMED202210)Lanzhou Institute of Arid Meteorology(IAM202119).
文摘Accurate quantification of soil moisture is essential to understand the land surface processes.Soil hydraulic properties influence water transport in soil and thus affect the estimation of soil moisture.However,some soil hydraulic properties are only observable at a few field sites.In this study,the effects of soil hydraulic properties on soil moisture estimation are investigated by using the one-dimensional(1-D)Richards equation at ELBARA,which is part of the Maqu monitoring network over the Tibetan Plateau(TP),China.Soil moisture assimilation experiments are then conducted with the unscented weighted ensemble Kalman filter(UWEnKF).The results show that the soil hydraulic properties significantly affect soil moisture simulation.Saturated soil hydraulic conductivity(Ksat)is optimized based on its observations in each soil layer with a genetic algorithm(GA,a widely used optimization method in hydrology),and the 1-D Richards equation performs well using the optimized values.If the range of Ksat for a complete soil profile is known for a particular soil texture(rather than for arbitrary layers within the horizon),optimized Ksat for each soil layer can be obtained by increasing the number of generations in GA,although this increases the computational cost of optimization.UWEnKF performs well with optimized Ksat,and improves the accuracy of soil moisture simulation more than that with calculated Ksat.Sometimes,better soil moisture estimation can be obtained by using optimized saturated volumetric soil moisture content Ksat.In summary,an accurate soil profile can be obtained by using soil moisture assimilation with optimized soil hydraulic properties.
基金supported by the National Key Research and Development Program of China (2016YFA0601601)National Natural Science Foundation of China (Grants Nos. U1502233,41405001)+1 种基金the Jiangsu Collaborative Innovation Center for Climate ChangePh.D. Programs Foundation of Ministry of Education of China (20135301120010)
文摘Using Moderate Resolution Imaging Spectroradiometer(MODIS) data from the dry season during 2010–2012 over the whole Yunnan Province, an improved temperature vegetation dryness index(iTVDI), in which a parabolic dry-edge equation replaces the traditional linear dry-edge equation, was developed, to reveal the regional drought regime in the dry season. After calculating the correlation coefficient, root-mean-square error, and standard deviation between the iTVDI and observed topsoil moisture at 10 and 20 cm for seven sites, the effectiveness of the new index in depicting topsoil moisture conditions was verified. The drought area indicated by iTVDI mapping was then compared with the drought-affected area reported by the local government. The results indicated that the iTVDI can monitor drought more accurately than the traditional TVDI during the dry season in Yunnan Province. Using iTVDI facilitates drought warning and irrigation scheduling, and the expectation is that this new index can be broadly applied in other areas.