This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their...This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.展开更多
In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz c...In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions.展开更多
In this paper we consider the differential equation with piecewisely constant arguments where ['] -denotes the greates integer function, r(t) E C([0,+∞),(0, +∞)),Pi ∈ [0, +∞)(i = 1, 2,''' , m), wit...In this paper we consider the differential equation with piecewisely constant arguments where ['] -denotes the greates integer function, r(t) E C([0,+∞),(0, +∞)),Pi ∈ [0, +∞)(i = 1, 2,''' , m), with Pm > 0, we establish some new sufficient conditions for an arbitrary solution N(t) to satisfy the initial conditions of the form N(0) = NO > 0 and N(-j) = N-j ≥ 0,j = 1, 2, ., m, to converge to the positive equilibrium N* as t →∞.展开更多
Differential equation has widely applied in science and engineering calculation. Runge Kutta method is a main method for solving differential equations. In this paper, the numerical properties of Runge-Kutta methods f...Differential equation has widely applied in science and engineering calculation. Runge Kutta method is a main method for solving differential equations. In this paper, the numerical properties of Runge-Kutta methods for the equation u′(t) = au(t)+bu([K/N* t]) is dealed with, where K and N is relatively prime and K < N,K,N∈ Z+. The conditions are obtained under which the numerical solutions preserve the analytical stability properties of the analytic ones and some numerical experiments are given.展开更多
In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcatio...In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcation theory. The interesting point is that the model will produce two different branches by limiting branch parameters of different intervals. Besides, image simulation is also given.展开更多
In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of...In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of generalized type (DEPCAG). This is based in the study of an equivalent integral equation with Cauchy and Green matrices type and in a solution of a DEPCAG integral inequality of Gronwall type. Several examples are also given to show the feasibility of results.展开更多
In the present article, we apply the modified piecewise variational iteration method to obtain the approximate analytical solutions of the differential equations with piecewise continuous arguments. This technique pro...In the present article, we apply the modified piecewise variational iteration method to obtain the approximate analytical solutions of the differential equations with piecewise continuous arguments. This technique provides a sequence of functions which converges to the exact solution of the problem. Moreover, this method reduces the volume of calculations because it does not need discretization of the variables, linearization or small perturbations. The results seem to show that the method is very reliable and convenient for solving such equations.展开更多
Consider the delay differential equation with continuous and piecewise constant argumentswhere [·] denotes the greatest integer function. We obtain sufficient conditions for thezero solution of (1) to be (asympt...Consider the delay differential equation with continuous and piecewise constant argumentswhere [·] denotes the greatest integer function. We obtain sufficient conditions for thezero solution of (1) to be (asymptotically) stable.1991 Mathematics Subject Classification: 39A12.展开更多
For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-al...For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.展开更多
In this paper, we give sufficient conditions for the existence and uniqueness of asymptotically w-antiperiodic solutions for a nonlinear differential equation with piecewise constant argument in a Banach space when w ...In this paper, we give sufficient conditions for the existence and uniqueness of asymptotically w-antiperiodic solutions for a nonlinear differential equation with piecewise constant argument in a Banach space when w is an integer. This is done using the Banach fixed point theorem. An example involving the heat operator is discussed as an illustration of the theory.展开更多
In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coef...In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory.展开更多
In this paper, we obtain some necessary and sufficient conditions for the oscillation of all positive solutions of a delay Logistic equation with continuous and piecewise constant arguments about the positive equilibr...In this paper, we obtain some necessary and sufficient conditions for the oscillation of all positive solutions of a delay Logistic equation with continuous and piecewise constant arguments about the positive equilibrium.展开更多
This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments.By combining compensated split-step methods and balanced methods,a ...This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments.By combining compensated split-step methods and balanced methods,a class of compensated split-step balanced(CSSB)methods are suggested for solving the equations.Based on the one-sided Lipschitz condition and local Lipschitz condition,a strong convergence criterion of CSSB methods is derived.It is proved under some suitable conditions that the numerical solutions produced by CSSB methods can preserve the mean-square exponential stability of the corresponding analytical solutions.Several numerical examples are presented to illustrate the obtained theoretical results and the effectiveness of CSSB methods.Moreover,in order to show the computational advantage of CSSB methods,we also give a numerical comparison with the adapted split-step backward Euler methods with or without compensation and tamed explicit methods.展开更多
The necessary and sufficient conditions for the oscillations of every solution of the nonlinear delay equation (t)+f(x(t-l))+g(x( t-k ))=0 are oblained.
In this paper,we study the existence of almost periodic solutions of neutral differential difference equations with piecewise constant arguments via difference equation methods.
In this work, we present some existence theorems of weighted pseudo almost periodic solutions for N-th order neutral differential equations with piecewise constant argument by means of weighted pseudo almost periodic ...In this work, we present some existence theorems of weighted pseudo almost periodic solutions for N-th order neutral differential equations with piecewise constant argument by means of weighted pseudo almost periodic solutions of relevant difference equations.展开更多
The authors employ the method of upper and lower solutions coupled with the monotone iterative technique to obtain some results of existence and un-iqueness for nonlinear boundary value problem of differential equatio...The authors employ the method of upper and lower solutions coupled with the monotone iterative technique to obtain some results of existence and un-iqueness for nonlinear boundary value problem of differential equations with piecewise constant arguments.展开更多
Based on the properties on almost periodic sequence, it is proved that the almost periodic solutions for a class of neutral differential equations with piecewise constant argument exist.
文摘This paper focuses on the analytical and numerical asymptotical stability of neutral reaction-diffusion equations with piecewise continuous arguments.First,for the analytical solutions of the equations,we derive their expressions and asymptotical stability criteria.Second,for the semi-discrete and one-parameter fully-discrete finite element methods solving the above equations,we work out the sufficient conditions for assuring that the finite element solutions are asymptotically stable.Finally,with a typical example with numerical experiments,we illustrate the applicability of the obtained theoretical results.
基金This work is supported by the National Natural Science Foundation of China(No.11671113)the National Postdoctoral Program for Innovative Talents(No.BX20180347).
文摘In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions.
基金Supported by the Science Foundation of Hunan Educational Commites (99C12)
文摘In this paper we consider the differential equation with piecewisely constant arguments where ['] -denotes the greates integer function, r(t) E C([0,+∞),(0, +∞)),Pi ∈ [0, +∞)(i = 1, 2,''' , m), with Pm > 0, we establish some new sufficient conditions for an arbitrary solution N(t) to satisfy the initial conditions of the form N(0) = NO > 0 and N(-j) = N-j ≥ 0,j = 1, 2, ., m, to converge to the positive equilibrium N* as t →∞.
基金This work is supported by the Research Fund of the Natural Science Foundation of Heilongjiang Province (No. A201214) and the National Natural Science Foundation of China(61501148).
文摘Differential equation has widely applied in science and engineering calculation. Runge Kutta method is a main method for solving differential equations. In this paper, the numerical properties of Runge-Kutta methods for the equation u′(t) = au(t)+bu([K/N* t]) is dealed with, where K and N is relatively prime and K < N,K,N∈ Z+. The conditions are obtained under which the numerical solutions preserve the analytical stability properties of the analytic ones and some numerical experiments are given.
基金supported by Beijing Higher Education Young Elite Teacher(YETP0458)
文摘In this paper, the stability and bifurcation behaviors of a predator-prey model with the piecewise constant arguments and time delay are investigated. Technical approach is fully based on Jury criterion and bifurcation theory. The interesting point is that the model will produce two different branches by limiting branch parameters of different intervals. Besides, image simulation is also given.
文摘In this paper, we investigate the existence, uniqueness and the asymptotic equiv- alence of a linear system and a perturbed system of differential equations with piecewise alternately advanced and retarded argument of generalized type (DEPCAG). This is based in the study of an equivalent integral equation with Cauchy and Green matrices type and in a solution of a DEPCAG integral inequality of Gronwall type. Several examples are also given to show the feasibility of results.
文摘In the present article, we apply the modified piecewise variational iteration method to obtain the approximate analytical solutions of the differential equations with piecewise continuous arguments. This technique provides a sequence of functions which converges to the exact solution of the problem. Moreover, this method reduces the volume of calculations because it does not need discretization of the variables, linearization or small perturbations. The results seem to show that the method is very reliable and convenient for solving such equations.
文摘Consider the delay differential equation with continuous and piecewise constant argumentswhere [·] denotes the greatest integer function. We obtain sufficient conditions for thezero solution of (1) to be (asymptotically) stable.1991 Mathematics Subject Classification: 39A12.
文摘For a set S of real numbers, we introduce the concept of S-almost automorphic functions valued in a Banach space. It generalizes in particular the space of Z-almost automorphic functions. Considering the space of S-almost automorphic functions, we give sufficient conditions of the existence and uniqueness of almost automorphic solutions of a differential equation with a piecewise constant argument of generalized type. This is done using the Banach fixed point theorem.
文摘In this paper, we give sufficient conditions for the existence and uniqueness of asymptotically w-antiperiodic solutions for a nonlinear differential equation with piecewise constant argument in a Banach space when w is an integer. This is done using the Banach fixed point theorem. An example involving the heat operator is discussed as an illustration of the theory.
基金supported by the National Natural Science Foundation of China(Nos.11671113,12071101).
文摘In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory.
基金This work was partially supported by the National Natural Science Foundation of China (10071045)Foundation of Zhejiang for Middle-young-aged Leader of Branch of Learning.
文摘In this paper, we obtain some necessary and sufficient conditions for the oscillation of all positive solutions of a delay Logistic equation with continuous and piecewise constant arguments about the positive equilibrium.
基金supported by National Natural Science Foundation of China(Grant No.11971010)Scientific Research Project of Education Department of Hubei Province(Grant No.B2019184)。
文摘This paper deals with numerical solutions of nonlinear stiff stochastic differential equations with jump-diffusion and piecewise continuous arguments.By combining compensated split-step methods and balanced methods,a class of compensated split-step balanced(CSSB)methods are suggested for solving the equations.Based on the one-sided Lipschitz condition and local Lipschitz condition,a strong convergence criterion of CSSB methods is derived.It is proved under some suitable conditions that the numerical solutions produced by CSSB methods can preserve the mean-square exponential stability of the corresponding analytical solutions.Several numerical examples are presented to illustrate the obtained theoretical results and the effectiveness of CSSB methods.Moreover,in order to show the computational advantage of CSSB methods,we also give a numerical comparison with the adapted split-step backward Euler methods with or without compensation and tamed explicit methods.
文摘The necessary and sufficient conditions for the oscillations of every solution of the nonlinear delay equation (t)+f(x(t-l))+g(x( t-k ))=0 are oblained.
基金Supported by the Science Foundation of Fushun Petroleum Institute
文摘In this paper,we study the existence of almost periodic solutions of neutral differential difference equations with piecewise constant arguments via difference equation methods.
基金Supported by National Natural Science Foundation of China(Grant Nos.11271380,11031002 and 11371058)Research Fund for the Doctoral Program of Higher Education(Grant No.20110003110004)+1 种基金the Grant of BeijingEducation Committee Key Project(Grant No.KZ201310028031)Natural Science Foundation of GuangdongProvince of China(Grant No.S2013010013212)
文摘In this work, we present some existence theorems of weighted pseudo almost periodic solutions for N-th order neutral differential equations with piecewise constant argument by means of weighted pseudo almost periodic solutions of relevant difference equations.
基金Supported partially by the Youthful Sciences Foundation of Shanxi(20021003).
文摘The authors employ the method of upper and lower solutions coupled with the monotone iterative technique to obtain some results of existence and un-iqueness for nonlinear boundary value problem of differential equations with piecewise constant arguments.
基金Project supported by the Postdoctoral Foundation of China.
文摘Based on the properties on almost periodic sequence, it is proved that the almost periodic solutions for a class of neutral differential equations with piecewise constant argument exist.