期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Heat Transfer and Its Effect on Solidification in Combined Mould 被引量:5
1
作者 QIU Sheng-tao TAO Hong-biao TANG Hong-wei ZHANG Hui ZHAO Pei 《Journal of Iron and Steel Research(International)》 SCIE CAS CSCD 2005年第6期20-22,36,共4页
The nucleation can be enhanced by decreasing the superheat of molten steel, thus reducing temperature gradient on the solidification front can retard the growth of columnar crystals and enlarge the equiaxed zone in co... The nucleation can be enhanced by decreasing the superheat of molten steel, thus reducing temperature gradient on the solidification front can retard the growth of columnar crystals and enlarge the equiaxed zone in continuous casting strand. The billets with equiaxed zone more than 90% were cast with a combined mould and the heat flux was measured. The heat transfer of the combined mould and traditional mould was compared. The resuits show that under same casting conditions, the temperature gradient on the solidification front in the combined mould is smaller than that in traditional mould at a distance within 0-150 mm from the meniscus. 展开更多
关键词 combined mould heat transfer temperature gradient equiaxed zone
下载PDF
Effect of superheat on quality of central equiaxed grain zone of continuously cast bearing steel billet based on two-dimensional segregation ratio 被引量:8
2
作者 Wei Wang Zi-bing Hou +1 位作者 Yi Chang Jiang-hai Cao 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第1期9-18,共10页
The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 ℃ by experimental observations and a finite element model in order to optimi... The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 ℃ by experimental observations and a finite element model in order to optimize superheat in continuous casting process. Several GCrl5 billets were collected from the continuous casting shop, and the same CEGZ was chosen for comparison of internal quality of GCrl5 billets. Considering the limitation of segregation index at some points, two- dimensional segregation ratio in CEGZ was introduced. Firstly, the segregation ratio and the area of center large dark points in CEGZ obtain the minimum at 25 ℃ superheat, which indicates that the quality of CEGZ at 25 ~C superheat is improved compared with those at 20 and 35 ℃ superheats for corresponding continuously cast billets. The highest superheat and the lowest superheat are not beneficial for improving the central zone quality in the billets. Secondly, the quality of CEGZ of GCr15 billets increases with a decrease in the secondary dendrite arm spacing of CEGZ. Finally, according to the established finite element model, it is deduced that the secondary dendrite arm spacing of CEGZ is closely related to its later solidifica- tion time at solid fraction of 0.5-1.0, and the former will be decreased when decreasing the latter. 展开更多
关键词 SUPERHEAT Continuously cast billet equiaxed grain zone SEGREGATION Solidification time
原文传递
Inclusions and solidification structures of high pure ferritic stainless steels dual stabilized by niobium and titanium 被引量:4
3
作者 Hong-Po Wang Li-Feng Sun +3 位作者 Jun-Jie Shi Cheng-Jun Liu Mao-Fa Jiang Chi Zhang 《Rare Metals》 SCIE EI CAS CSCD 2014年第6期761-766,共6页
As the raw materials in the post process of rolling and heat treatment, ingots have great effects on the properties of the final products. Inclusions and solidification structures are the most important aspects of the... As the raw materials in the post process of rolling and heat treatment, ingots have great effects on the properties of the final products. Inclusions and solidification structures are the most important aspects of the quality of ingots. Niobium and titanium are usually used to react with carbon and nitrogen to improve the properties of ferritic stainless steels. In this research, combined with thermodynamic calculation, effects of niobium and titanium on the inclusions and solidification structures in three kinds of high pure ferritic stainless steels with different titanium additions were investigated by optical microscope(OM), scanning electron microscope(SEM), transmission electron microscope(TEM), and energy disperse spectrometer(EDS). Results show that Al2O3 and a few(Nb,Ti)N particles form when titanium addition is 0.01 %.Furthermore, inclusions are mainly Ti N and Al2O3–Ti Ox–Ti N duplex inclusions when titanium addition is more than0.10 %. Those two types of inclusions are in well distribution, and can afford nuclei to the solidification process.Therefore, the ratio of equiaxed zone increases with the increase of titanium addition. The ratio increases from42.1 % to 64.0 % with the titanium addition increasing from 0.01 % to 0.10 %, and it increases to 85.7 % when the titanium addition reaches 0.34 %. 展开更多
关键词 High pure ferritic stainless steel Inclusion Solidification structure equiaxed zone Stabilization element
原文传递
Solidification Structure of Continuous Casting Large Round Billets under Mold Electromagnetic Stirring 被引量:5
4
作者 Tao SUN Feng YUE +3 位作者 Hua-jie WU Chun GUO Ying LI Zhong-cun MA 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第4期329-337,共9页
The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures... The solidification structure of a continuous casting large round billet was analyzed by a cellular-automaton-finite-element coupling model using the ProCAST software. The actual and simulated solidification structures were compared under mold electromagnetic stirring (MEMS) conditions (current of 300 A and frequency of 3 Hz). Thereafter, the solidification structures of the large round billet were investigated under different superheats, casting speeds, and secondary cooling intensities. Finally, the effect of the MEMS current on the solidification structures was obtained under fixed superheat, casting speed, secondary cooling intensity, and MEMS frequency. The model accurately simulated the actual solidification structures of any steel, regardless of its size and the parameters used in the continuous casting process. The ratio of the central equiaxed grain zone was found to increase with decreasing superheat, increasing casting speed, decreasing secondary cooling intensity, and increasing MEMS current. The grain size obviously decreased with decreasing superheat and increasing MEMS current but was less sensitive to the casting speed and secondary cooling intensity. 展开更多
关键词 continuous casting large round billet solidification structure cellular-automaton-finite-element method mold electromagnetic stirring central equiaxed grain zone grain size
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部