Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is ext...Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.展开更多
With the rapid development of communication technology,the problem of antenna array optimization plays a crucial role.Among many types of antennas,line antenna arrays(LAA)are the most commonly applied,but the side lob...With the rapid development of communication technology,the problem of antenna array optimization plays a crucial role.Among many types of antennas,line antenna arrays(LAA)are the most commonly applied,but the side lobe level(SLL)reduction is still a challenging problem.In the radiation process of the linear antenna array,the high side lobe level will interfere with the intensity of the antenna target radiation direction.Many conventional methods are ineffective in obtaining the maximumside lobe level in synthesis,and this paper proposed a quantum equilibrium optimizer(QEO)algorithm for line antenna arrays.Firstly,the linear antenna array model consists of an array element arrangement.Array factor(AF)can be expressed as the combination of array excitation amplitude and position in array space.Then,inspired by the powerful computing power of quantum computing,an improved quantum equilibrium optimizer combining quantum coding and quantum rotation gate strategy is proposed.Finally,the proposed quantum equilibrium optimizer is used to optimize the excitation amplitude of the array elements in the linear antenna array model by numerical simulation to minimize the interference of the side lobe level to the main lobe radiation.Six differentmetaheuristic algorithms are used to optimize the excitation amplitude in three different arrays of line antenna arrays,the experimental results indicated that the quantum equilibrium optimizer is more advantageous in obtaining the maximum side lobe level reduction.Compared with other metaheuristic optimization algorithms,the quantum equilibrium optimizer has advantages in terms of convergence speed and accuracy.展开更多
The equilibrium optimizer(EO)represents a new,physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equili...The equilibrium optimizer(EO)represents a new,physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium.Despite its innovative foundation,the EO exhibits certain limitations,including imbalances between exploration and exploitation,the tendency to local optima,and the susceptibility to loss of population diversity.To alleviate these drawbacks,this paper introduces an improved EO that adopts three strategies:adaptive inertia weight,Cauchy mutation,and adaptive sine cosine mechanism,called SCEO.Firstly,a new update formula is conceived by incorporating an adaptive inertia weight to reach an appropriate balance between exploration and exploitation.Next,an adaptive sine cosine mechanism is embedded to boost the global exploratory capacity.Finally,the Cauchy mutation is utilized to prevent the loss of population diversity during searching.To validate the efficacy of the proposed SCEO,a comprehensive evaluation is conducted on 15 classical benchmark functions and the CEC2017 test suite.The outcomes are subsequently benchmarked against both the conventional EO,its variants,and other cutting-edge metaheuristic techniques.The comparisons reveal that the SCEO method provides significantly superior results against the standard EO and other competitors.In addition,the developed SCEO is implemented to deal with a mobile robot path planning(MRPP)task,and compared to some classical metaheuristic approaches.The analysis results demonstrate that the SCEO approach provides the best performance and is a prospective tool for MRPP.展开更多
Plasma equilibrium reconstruction provides essential information for tokamak operation and physical analysis.An extensive and reliable set of magnetic diagnostics is required to obtain accurate plasma equilibrium.This...Plasma equilibrium reconstruction provides essential information for tokamak operation and physical analysis.An extensive and reliable set of magnetic diagnostics is required to obtain accurate plasma equilibrium.This study designs and optimizes the magnetic diagnostics layout for the reconstruction of the equilibrium of the plasma according to the scientific objectives,engineering design parameters,and limitations of the Chinese Fusion Engineering Test Reactor(CFETR).Based on the CFETR discharge simulation,magnetic measurement data are employed to reconstruct consistent plasma equilibrium parameters,and magnetic diagnostics'number and position are optimized by truncated Singular value decomposition,verifying the redundancy reliability of the magnetic diagnostics layout design.This provides a design solution for the layout of the magnetic diagnostics system required to control the plasma equilibrium of CFETR,and the developed design and optimization method can provide effective support to design magnetic diagnostics systems for future magnetic confinement fusion devices.展开更多
More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud com...More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud computing’s low-latency performance issues in AIoT scenarios have led researchers to explore fog computing as a complementary extension.However,the effective allocation of resources for task execution within fog environments,characterized by limitations and heterogeneity in computational resources,remains a formidable challenge.To tackle this challenge,in this study,we integrate fog computing and cloud computing.We begin by establishing a fog-cloud environment framework,followed by the formulation of a mathematical model for task scheduling.Lastly,we introduce an enhanced hybrid Equilibrium Optimizer(EHEO)tailored for AIoT task scheduling.The overarching objective is to decrease both the makespan and energy consumption of the fog-cloud system while accounting for task deadlines.The proposed EHEO method undergoes a thorough evaluation against multiple benchmark algorithms,encompassing metrics likemakespan,total energy consumption,success rate,and average waiting time.Comprehensive experimental results unequivocally demonstrate the superior performance of EHEO across all assessed metrics.Notably,in the most favorable conditions,EHEO significantly diminishes both the makespan and energy consumption by approximately 50%and 35.5%,respectively,compared to the secondbest performing approach,which affirms its efficacy in advancing the efficiency of AIoT task scheduling within fog-cloud networks.展开更多
Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium-aluminum-rich inclu- s...Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium-aluminum-rich inclu- sions, and bulk compositions of planetary materials. During evaporation and condensation, the equilibrium isotope fractionation factor (α) between high-temperature silicate melt and vapor is a fundamental parameter that can con- strain the melt's isotopic compositions. However, equilib- rium a is difficult to calibrate experimentally. Here we used Mg as an example and calculated equilibrium Mg isotope fractionation in MgSiO3 and Mg2SiO4 melt-vapor systems based on first-principles molecular dynamics and the high- temperature approximation of the Bigeleisen-Mayer equation. We found that, at 2500 K, 625Mg values in the MgSiO3 and Mg2SiO4 melts were 0.141 ±0.004 and 0.143 ±0.003‰ more positive than in their respective vapors. The corresponding 626Mg values were 0.270 ± 0.008 and 0.274 ± 0.006‰ more positive than in vapors, respectively. The general α - T equations describing the equilibrium Mg α in MgSiO3 and Mg2SiO4 melt-vapor systems were: αMg(l)-Mg(g) = 1 + 5.264×10^5/T^2 (1/m - 1/m') and αmg(l)-Mg(g) = 1 + 5.340×10^5/T^2 (1/m - 1/m'), respectively, Where m is the mass of light isotope, ^25Mg or ^26Mg. These results offer a necessary parameter for mechanistic under- standing of Mg isotope fractionation during evaporation and condensation that commonly occurs during the early stages of planetary formation and evolution.展开更多
In this paper, we consider the optimal risk sharing problem between two parties in the insurance business: the insurer and the insured. The risk is allocated between the insurer and the insured by setting a deductible...In this paper, we consider the optimal risk sharing problem between two parties in the insurance business: the insurer and the insured. The risk is allocated between the insurer and the insured by setting a deductible and coverage in the insurance contract. We obtain the optimal deductible and coverage by considering the expected product of the two parties' utilities of terminal wealth according to stochastic optimal control theory. An equilibrium policy is also derived for when there are both a deductible and coverage;this is done by modelling the problem as a stochastic game in a continuous-time framework. A numerical example is provided to illustrate the results of the paper.展开更多
针对标准均衡优化算法(EO)存在全局搜索和局部搜索的平衡能力不足以及易陷入局部最优的问题,提出了一种基于可变生成概率和多差分柯西变异的均衡优化算法(Variable generation probability and multi-difference Cauchy variation equil...针对标准均衡优化算法(EO)存在全局搜索和局部搜索的平衡能力不足以及易陷入局部最优的问题,提出了一种基于可变生成概率和多差分柯西变异的均衡优化算法(Variable generation probability and multi-difference Cauchy variation equilib-rium optimization algorithm,VDEO)。首先,结合Tent混沌映射增加初始化种群的多样性,为寻优提供基础;其次,引入可变的生成概率代替原始的固定值,使算法在迭代前期增加全局搜索能力,后期关注求解精度,以提升全局搜索和局部搜索的平衡能力;最后,融合多种差分策略和柯西变异帮助寻优过程跳出局部最优。针对包含单峰、多峰和固定维多峰在内的15个基准测试函数和CEC2022测试函数,将VDEO在多种维数下与EO,GWO,WOA,SCA,MFO,AOA,AVOA,BWO,AHA,POA这10个启发式算法进行仿真对比实验,并对基准测试函数的实验结果进行Wilcoxon秩和检验,实验结果表明,VDEO实现了更好的全局搜索和局部搜索的平衡,并具有更好的跳出局部最优的能力以及更高的收敛精度。展开更多
文摘Speech emotion recognition(SER)uses acoustic analysis to find features for emotion recognition and examines variations in voice that are caused by emotions.The number of features acquired with acoustic analysis is extremely high,so we introduce a hybrid filter-wrapper feature selection algorithm based on an improved equilibrium optimizer for constructing an emotion recognition system.The proposed algorithm implements multi-objective emotion recognition with the minimum number of selected features and maximum accuracy.First,we use the information gain and Fisher Score to sort the features extracted from signals.Then,we employ a multi-objective ranking method to evaluate these features and assign different importance to them.Features with high rankings have a large probability of being selected.Finally,we propose a repair strategy to address the problem of duplicate solutions in multi-objective feature selection,which can improve the diversity of solutions and avoid falling into local traps.Using random forest and K-nearest neighbor classifiers,four English speech emotion datasets are employed to test the proposed algorithm(MBEO)as well as other multi-objective emotion identification techniques.The results illustrate that it performs well in inverted generational distance,hypervolume,Pareto solutions,and execution time,and MBEO is appropriate for high-dimensional English SER.
基金supported by the National Science Foundation of China under Grant No.62066005Project of the Guangxi Science and Technology under Grant No.AD21196006.
文摘With the rapid development of communication technology,the problem of antenna array optimization plays a crucial role.Among many types of antennas,line antenna arrays(LAA)are the most commonly applied,but the side lobe level(SLL)reduction is still a challenging problem.In the radiation process of the linear antenna array,the high side lobe level will interfere with the intensity of the antenna target radiation direction.Many conventional methods are ineffective in obtaining the maximumside lobe level in synthesis,and this paper proposed a quantum equilibrium optimizer(QEO)algorithm for line antenna arrays.Firstly,the linear antenna array model consists of an array element arrangement.Array factor(AF)can be expressed as the combination of array excitation amplitude and position in array space.Then,inspired by the powerful computing power of quantum computing,an improved quantum equilibrium optimizer combining quantum coding and quantum rotation gate strategy is proposed.Finally,the proposed quantum equilibrium optimizer is used to optimize the excitation amplitude of the array elements in the linear antenna array model by numerical simulation to minimize the interference of the side lobe level to the main lobe radiation.Six differentmetaheuristic algorithms are used to optimize the excitation amplitude in three different arrays of line antenna arrays,the experimental results indicated that the quantum equilibrium optimizer is more advantageous in obtaining the maximum side lobe level reduction.Compared with other metaheuristic optimization algorithms,the quantum equilibrium optimizer has advantages in terms of convergence speed and accuracy.
基金support from the National Natural Science Foundation of China[Grant Nos.61461053,61461054,and 61072079]Yunnan Provincial Education Department Scientific Research Fund Project[2022Y008].
文摘The equilibrium optimizer(EO)represents a new,physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium.Despite its innovative foundation,the EO exhibits certain limitations,including imbalances between exploration and exploitation,the tendency to local optima,and the susceptibility to loss of population diversity.To alleviate these drawbacks,this paper introduces an improved EO that adopts three strategies:adaptive inertia weight,Cauchy mutation,and adaptive sine cosine mechanism,called SCEO.Firstly,a new update formula is conceived by incorporating an adaptive inertia weight to reach an appropriate balance between exploration and exploitation.Next,an adaptive sine cosine mechanism is embedded to boost the global exploratory capacity.Finally,the Cauchy mutation is utilized to prevent the loss of population diversity during searching.To validate the efficacy of the proposed SCEO,a comprehensive evaluation is conducted on 15 classical benchmark functions and the CEC2017 test suite.The outcomes are subsequently benchmarked against both the conventional EO,its variants,and other cutting-edge metaheuristic techniques.The comparisons reveal that the SCEO method provides significantly superior results against the standard EO and other competitors.In addition,the developed SCEO is implemented to deal with a mobile robot path planning(MRPP)task,and compared to some classical metaheuristic approaches.The analysis results demonstrate that the SCEO approach provides the best performance and is a prospective tool for MRPP.
基金Project supported by the National MCF Energy Research and Development Program of China (Grant Nos.2022YFE03010002,2018YFE0302100,and 2018YFE0301105)the National Natural Science Foundation of China (Grant Nos.11875291,11805236,11905256,and 12075285)。
文摘Plasma equilibrium reconstruction provides essential information for tokamak operation and physical analysis.An extensive and reliable set of magnetic diagnostics is required to obtain accurate plasma equilibrium.This study designs and optimizes the magnetic diagnostics layout for the reconstruction of the equilibrium of the plasma according to the scientific objectives,engineering design parameters,and limitations of the Chinese Fusion Engineering Test Reactor(CFETR).Based on the CFETR discharge simulation,magnetic measurement data are employed to reconstruct consistent plasma equilibrium parameters,and magnetic diagnostics'number and position are optimized by truncated Singular value decomposition,verifying the redundancy reliability of the magnetic diagnostics layout design.This provides a design solution for the layout of the magnetic diagnostics system required to control the plasma equilibrium of CFETR,and the developed design and optimization method can provide effective support to design magnetic diagnostics systems for future magnetic confinement fusion devices.
基金in part by the Hubei Natural Science and Research Project under Grant 2020418in part by the 2021 Light of Taihu Science and Technology Projectin part by the 2022 Wuxi Science and Technology Innovation and Entrepreneurship Program.
文摘More devices in the Intelligent Internet of Things(AIoT)result in an increased number of tasks that require low latency and real-time responsiveness,leading to an increased demand for computational resources.Cloud computing’s low-latency performance issues in AIoT scenarios have led researchers to explore fog computing as a complementary extension.However,the effective allocation of resources for task execution within fog environments,characterized by limitations and heterogeneity in computational resources,remains a formidable challenge.To tackle this challenge,in this study,we integrate fog computing and cloud computing.We begin by establishing a fog-cloud environment framework,followed by the formulation of a mathematical model for task scheduling.Lastly,we introduce an enhanced hybrid Equilibrium Optimizer(EHEO)tailored for AIoT task scheduling.The overarching objective is to decrease both the makespan and energy consumption of the fog-cloud system while accounting for task deadlines.The proposed EHEO method undergoes a thorough evaluation against multiple benchmark algorithms,encompassing metrics likemakespan,total energy consumption,success rate,and average waiting time.Comprehensive experimental results unequivocally demonstrate the superior performance of EHEO across all assessed metrics.Notably,in the most favorable conditions,EHEO significantly diminishes both the makespan and energy consumption by approximately 50%and 35.5%,respectively,compared to the secondbest performing approach,which affirms its efficacy in advancing the efficiency of AIoT task scheduling within fog-cloud networks.
基金provided by the strategic priority research program(B)of CAS(XDB18010104)China NSFC Grant No.41490635 to Professor Huiming Bao
文摘Isotope fractionation during the evaporation of silicate melt and condensation of vapor has been widely used to explain various isotope signals observed in lunar soils, cosmic spherules, calcium-aluminum-rich inclu- sions, and bulk compositions of planetary materials. During evaporation and condensation, the equilibrium isotope fractionation factor (α) between high-temperature silicate melt and vapor is a fundamental parameter that can con- strain the melt's isotopic compositions. However, equilib- rium a is difficult to calibrate experimentally. Here we used Mg as an example and calculated equilibrium Mg isotope fractionation in MgSiO3 and Mg2SiO4 melt-vapor systems based on first-principles molecular dynamics and the high- temperature approximation of the Bigeleisen-Mayer equation. We found that, at 2500 K, 625Mg values in the MgSiO3 and Mg2SiO4 melts were 0.141 ±0.004 and 0.143 ±0.003‰ more positive than in their respective vapors. The corresponding 626Mg values were 0.270 ± 0.008 and 0.274 ± 0.006‰ more positive than in vapors, respectively. The general α - T equations describing the equilibrium Mg α in MgSiO3 and Mg2SiO4 melt-vapor systems were: αMg(l)-Mg(g) = 1 + 5.264×10^5/T^2 (1/m - 1/m') and αmg(l)-Mg(g) = 1 + 5.340×10^5/T^2 (1/m - 1/m'), respectively, Where m is the mass of light isotope, ^25Mg or ^26Mg. These results offer a necessary parameter for mechanistic under- standing of Mg isotope fractionation during evaporation and condensation that commonly occurs during the early stages of planetary formation and evolution.
基金supported by the NSF of China(11931018, 12271274)the Tianjin Natural Science Foundation (19JCYBJC30400)。
文摘In this paper, we consider the optimal risk sharing problem between two parties in the insurance business: the insurer and the insured. The risk is allocated between the insurer and the insured by setting a deductible and coverage in the insurance contract. We obtain the optimal deductible and coverage by considering the expected product of the two parties' utilities of terminal wealth according to stochastic optimal control theory. An equilibrium policy is also derived for when there are both a deductible and coverage;this is done by modelling the problem as a stochastic game in a continuous-time framework. A numerical example is provided to illustrate the results of the paper.
文摘针对标准均衡优化算法(EO)存在全局搜索和局部搜索的平衡能力不足以及易陷入局部最优的问题,提出了一种基于可变生成概率和多差分柯西变异的均衡优化算法(Variable generation probability and multi-difference Cauchy variation equilib-rium optimization algorithm,VDEO)。首先,结合Tent混沌映射增加初始化种群的多样性,为寻优提供基础;其次,引入可变的生成概率代替原始的固定值,使算法在迭代前期增加全局搜索能力,后期关注求解精度,以提升全局搜索和局部搜索的平衡能力;最后,融合多种差分策略和柯西变异帮助寻优过程跳出局部最优。针对包含单峰、多峰和固定维多峰在内的15个基准测试函数和CEC2022测试函数,将VDEO在多种维数下与EO,GWO,WOA,SCA,MFO,AOA,AVOA,BWO,AHA,POA这10个启发式算法进行仿真对比实验,并对基准测试函数的实验结果进行Wilcoxon秩和检验,实验结果表明,VDEO实现了更好的全局搜索和局部搜索的平衡,并具有更好的跳出局部最优的能力以及更高的收敛精度。