The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integra...The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integrating TFM initiatives and allocate the limited airspace resources to these airlines equitably and efficiently is still a problem.The air traffic management(ATM)authority aims to minimizing the systemic costs of congested airspaces.And the airlines are self-interested and profit-oriented.Being incorporated into the collaborative decision making(CDM)process,the airlines can influence the rescheduling decisions to profit themselves.The airlines maybe hide the flight information that is disadvantageous to them,but is necessary to the optimal system decision.To realize the coincidence goal between the ATM authority and airlines for the efficient,and equitable allocation of airspace resources,this paper provides an auction-based market method to solve the congestion airspace problem under the pre-tactic and tactic stage of air traffic flow management.Through a simulation experiment,the rationing results show that the auction method can decrease the total delay costs of flights in the congested airspace compared with both the first schedule first service(FSFS)tactic and the ration by schedule(RBS)tactic.Finally,the analysis results indicate that if reallocate the charges from the auction to the airlines according to the proportion of their disrupted flights,the auction mechanism can allocate the airspace resource in economy equitably and decrease the delay losses of the airlines compared with the results of the FSFS tactic.展开更多
Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the st...Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.展开更多
The recently proposed method of our research group named as directional Lyapunov exponents(DLEs) is presented. Then, DLEs are used to analyze the eigenstructure of the output phase space around the equilibrium point...The recently proposed method of our research group named as directional Lyapunov exponents(DLEs) is presented. Then, DLEs are used to analyze the eigenstructure of the output phase space around the equilibrium points. Finally, the impacts of the superlattice parameter changes on the characteristics of the output chaotic signal are analyzed. The experimental results show that parameter changes of the superlattice will affect the eigenstructure around the equilibrium points in the output phase space, and DLEs are sensitive to these changes.展开更多
In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-...In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-C) strength criterion and the initial normal stress without considering the inter-slice(or inter-column) forces, the normal and shear stresses on the slip surface are assumed using some dimensionless variables, and these variables have the same numbers with the force and moment equilibrium equations of a sliding body to establish easily the linear equation groups for solving them. After these variables are determined, the normal stresses, shear stresses, and slope safety factor are also obtained using the stresses assumptions and M-C strength criterion. In the case of a three-dimensional slope stability analysis, three calculation methods, namely, a non-strict method, quasi-strict method, and strict method, can be obtained by satisfying different force and moment equilibrium conditions. Results of the comparison in the classic two- and three-dimensional slope examples show that the slope safety factors calculated using the current method and the other limit equilibrium methods are approximately equal to each other, indicating the feasibility of the current method; further, the following conclusions are obtained: 1) The current method better amends the initial normal and shear stresses acting on the slip surface, and has the identical results with using simplified Bishop method, Spencer method, and Morgenstern-Price(M-P) method; however, the stress curve of the current method is smoother than that obtained using the three abovementioned methods. 2) The current method is suitable for analyzing the two- and three-dimensional slope stability. 3) In the three-dimensional asymmetric sliding body, the non-strict method yields safer solutions, and the results of the quasi-strict method are relatively reasonable and close to those of the strict method, indicating that the quasi-strict method can be used to obtain a reliable slope safety factor.展开更多
Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof stra...Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof strata,an elastic mechanics model was established to calculate the stress applied on the coal wall.The displacement method was used to obtain the stress and deformation distributions of the coal wall.This study also researched the influence of support resistance,protective pressure to the coal wall,fracture position of the main roof and mining height on the coal wall deformation.The following conclusions are drawn:(1) The shorter the distance from the longwall face,the greater the vertical compressive stress and horizontal tensile stress borne by the coal wall.The coal wall is prone to failure in the form of compressive-shear and tension;(2) With increasing support resistance,the revolution angle of the main roof decreases linearly.As the support resistance and protective force supplied by the face guard increases,the maximum deformation of the coal wall decreases linearly;(3) As the face approaches the fracture position of the main roof,coal wall horizontal deformation increases significantly,and the coal wall is prone to instability;and(4) The best mining height of 14101 longwall face is 3.0 m.展开更多
Bubonic plague is a serious bacterial disease, mainly transmitted to human beings and rodents through flea bite. However, the disease may also be transmitted upon the interaction with the infected materials or surface...Bubonic plague is a serious bacterial disease, mainly transmitted to human beings and rodents through flea bite. However, the disease may also be transmitted upon the interaction with the infected materials or surfaces in the environment. In this study, a deterministic model for bubonic plague disease with Yersinia pestis in the environment is developed and analyzed. Conditions for existence and stability of the equilibrium points are established. Using Jacobian method disease free equilibrium (DFE) point, E<sup>0</sup> was proved to be locally asymptotically stable. The Metzler matrix method was used to prove that the DFE was globally asymptotically stable when R<sub>0</sub> < 1. By applying Lyapunov stability theory and La Salles invariant principle, we prove that the endemic equilibrium point of system is globally asymptotically stable when R<sub>0</sub> > 1. Numerical simulations are done to verify the analytical predictions. The results show that bubonic plague can effectively be controlled or even be eradicated if efforts are made to ensure that there are effective and timely control strategies.展开更多
In this paper,a statistical method called Generalized Equilibrium Feedback Analysis(GEFA)is used to investigate the responses of the North Pacific Storm Track(NPST)in the cold season to the multi-scale oceanic variati...In this paper,a statistical method called Generalized Equilibrium Feedback Analysis(GEFA)is used to investigate the responses of the North Pacific Storm Track(NPST)in the cold season to the multi-scale oceanic variations of the Kuroshio Extension(KE)system,including its large-scale variation,oceanic front meridional shift,and mesoscale eddy activity.Results show that in the cold season from the lower to the upper troposphere,the KE large-scale variation significantly weakens the storm track activity over the central North Pacific south of 30°N.The northward shift of the KE front significantly strengthens the storm track activity over the western and central North Pacific south of 40°N,resulting in a southward shift of the NPST.In contrast,the NPST response to KE mesoscale eddy activity is not so significant and relatively shallow,which only shows some significant positive signals near the dateline in the lower and middle troposphere.Furthermore,it is found that baroclinicity and baroclinic energy conversion play an important role in the formation of the NPST response to the KE multi-scale oceanic variations.展开更多
Slope failures are an inevitable aspect of economic pit slope designs in the mining industry.Large open pit guidelines and industry standards accept up to 30%of benches in open pits to collapse provided that they are ...Slope failures are an inevitable aspect of economic pit slope designs in the mining industry.Large open pit guidelines and industry standards accept up to 30%of benches in open pits to collapse provided that they are controlled and that no personnel are at risk.Rigorous ground control measures including real time monitoring systems at TARP(trigger-action-response-plan)protocols are widely utilized to prevent personnel from being exposed to slope failure risks.Technology and computing capability are rapidly evolving.Aerial photogrammetry techniques using UAV(unmanned aerial vehicle)enable geotechnical engineers and engineering geologists to work faster and more safely by removing themselves from potential line-of-fire near unstable slopes.Slope stability modelling software using limit equilibrium(LE)and finite element(FE)methods in three dimensions(3D)is also becoming more accessible,user-friendly and faster to operate.These key components enable geotechnical engineers to undertake site investigations,develop geotechnical models and assess slope stability faster and in more detail with less exposure to fall of ground hazards in the field.This paper describes the rapid and robust process utilized at BHP Limited for appraising a slope failure at an iron ore mine site in the Pilbara region of Western Australia using a combination of UAV photogrammetry and 3D slope stability models in less than a shift(i.e.less than 12 h).展开更多
Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methano...Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methanol,considered as a promising renewable energy vector to substitute fossil fuel resources.Adequate operation conditions(molar feed composition,temperature and pressure)are required for the sole production of"metgas"while achieving high CH4,CO2 and H2O conversion levels.In this work,thermodynamic equilibrium analysis of CSDRM has been performed using Gibbs free energy minimization where;(i)the effect of temperature(range:200-1000℃),(ii)feed composition(stoichiometric ratio as compared to a feed under excess steam or excess carbon dioxide),(iii)pressure(range:1-20 bar)and,(iv)the presence of a gaseous diluent on coke yields,reactivity levels and selectivity towards"metgas"were investigated.Running CSDRM at a temperature of at least 800℃,a pressure of 1 bar and under a feed composition where CO2-H2O/CH4 is around 1.0,are optimum conditions for the theoretical production of"metgas"while minimizing C(S)formation for longer experimental catalytic runs.A second part of this work presents a review of the recent progresses in the design of(principally)Ni-based catalysts along with some mechanistic and kinetic modeling aspects for the targeted CSDRM reaction.As compared to noble metals,their high availability,low cost and good intrinsic activity levels are main reasons for increasing research dedications in understanding deactivation potentials and providing amelioration strategies for further development.Deactivation causes and main orientations towards designing deactivationresistant supported Ni nanoparticles are clearly addressed and analyzed.Reported procedures based on salient catalytic features(i.e.,acidity/basicity character,redox properties,oxygen mobility,metal-support interaction)and recently employed innovative tactics(such as confinement within mesoporous systems,stabilization through core shell structures or on carbide surfaces)are highlighted and their impact on Ni0reactivity and stability are discussed.The final aspect of this review encloses the major directions and trends for improving synthesis/preparation designs of Ni-based catalysts for the sake of upgrading their usage into industrially oriented combined reforming operations.展开更多
Thermodynamic equilibrium calculations were performed to reveal effects of interactions among Cl, S, P and other minerals on Cu migration. Our results showed that HCl(g), SO2(g) and (P2O5)2(g) were released fr...Thermodynamic equilibrium calculations were performed to reveal effects of interactions among Cl, S, P and other minerals on Cu migration. Our results showed that HCl(g), SO2(g) and (P2O5)2(g) were released from the sewage sludge co-incineration. Cl was found to weaken adsorption of Cu by Al2O3, CaO and Fe2O3, while S de- layed reactions of Fe2O3 and Al2O3 with Cu, with P having no effect on reactions between the minerals and Cu. Among the coupled systems ofCl, S and P, the co-existences of Cl and S, and Cl, S and P were determined to inhibit Cu volatilization, and the co-existence of Cl and P had an enhancing effect Cu migration was affected only by S in the S and P system. With the SiO2, CaO and Al2O3 system, both Cl alone and Cl and P led to failed reactions be- tween the minerals and Cu. In the systems of S, S and Cl, S and P, and S, Cl and P, the migration behavior of Cu was mainly affected by S at low temperatures and by Cl at high temperatures, whereas P had no effect on Cu mi- gration during the entire nrocess.展开更多
An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level progr...An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level programming model was proposed to model the ATR scheme optimization problem by aiming at consumer surplus maximization and overload flow minimization at the upper-level model. At the lower-level model, elastic demand, mode choice and multi-class user equilibrium assignment were synthetically optimized. A genetic algorithm involving prolonging codes was constructed, demonstrating high computing efficiency in that it dynamically includes newly-appearing overload links in the codes so as to reduce the subsequent searching range. Moreover,practical processing approaches were suggested, which may improve the operability of the model-based solutions.展开更多
The selective precipitation of zinc from zinc-nickel sulfate solution with the Zn/Ni molar ratio of20:1was studied.Dropwise addition of0.5mol/L NaOH solution into the zinc-nickel sulfate solution containing0,0.01,0.02...The selective precipitation of zinc from zinc-nickel sulfate solution with the Zn/Ni molar ratio of20:1was studied.Dropwise addition of0.5mol/L NaOH solution into the zinc-nickel sulfate solution containing0,0.01,0.02,0.03and0.04mol/L ethylene diamine tetraacetate(EDTA)as a chelating agent was done.The equilibrium analysis of precipitation pathway was performed using Visual MINTEQ program.The equilibrium analysis showed that the presence of small amounts of EDTA can prevent nickel precipitation in alkaline conditions without any negative effect on zinc precipitation.On this basis,more than90%of zinc could be precipitated as a product with about50%Zn and only0.11%Ni at pH=9.0merely as a result of the presence of0.03mol/L EDTA in the solution.The stirring time of120min after precipitation was found to be essential for more complete separation.The X-ray diffraction studies on the precipitate revealed that the precipitated phase was Zn4(OH)6SO4.4H2O.展开更多
An optimum design of box cuts in soil formations is very crucial in order to obviate the major risk factors originating from the collapse of sidewalls and flooding of excavations during storm rainfall. The present pap...An optimum design of box cuts in soil formations is very crucial in order to obviate the major risk factors originating from the collapse of sidewalls and flooding of excavations during storm rainfall. The present paper aims to present a holistic classification of the Kalahari Formation stratigraphy in Zone 5 and define engineering properties of each lithological unit, in order to establish a safe working design. For the present objectives, collection of data was carried out through logging core from selected geotechnical boreholes drilled within vicinity of the proposed Northern mine box cut. Hydrogeological assessments and feasibility studies within the purview of study region were also considered. Geotechnical logging parameters gathered on site were derived from the Rock Mass Rating system (RMR) for design requirements [<a href="#ref1">1</a>]. Input parameters and material characteristics taken from laboratory test results provided by KCM were incorporated in the analysis. The box cut slopes were modelled in “Rocscience software” for evaluation of safety factor using “limit equilibrium method”. Slope optimization required the slope surface to be as steep as possible while maintaining an adequate factor of safety ranging from 1.5 - 1.8. For the box cut design with optimum safety, the recommended parameters are: stable slope angle—35<span style="white-space:nowrap;">°</span> - 40<span style="white-space:nowrap;">°</span>;ramp angle—8<span style="white-space:nowrap;">°</span>, depth of pit—60 meters;bench width—4.9 meters and the bench length—13.25 meters.展开更多
Atmospheric response to SST variability was estimated using generalized equilibrium feedback analysis (GEFA) in the SST EOF space with synthesis data from an idealized climate model. Results show that the GEFA atmos...Atmospheric response to SST variability was estimated using generalized equilibrium feedback analysis (GEFA) in the SST EOF space with synthesis data from an idealized climate model. Results show that the GEFA atmospheric response to the leading SST EOF modes is much more accurate and robust than the GEFA feedback matrix in physical space. Therefore, GEFA provides a practical method for assessing atmospheric response to large-scale SST anomalies in terms of the leading EOFs.展开更多
Although slice methods are simple and effective slope stability analysis approaches,they are statically indeterminate.Several modifications of the slice method,such as the Spencer,MorgensternPrice,and Chen-Morgenstern...Although slice methods are simple and effective slope stability analysis approaches,they are statically indeterminate.Several modifications of the slice method,such as the Spencer,MorgensternPrice,and Chen-Morgenstern methods,are statically determinate and solvable as they assume the inter-slice force inclination angle;however,there is a small gap between the assumptions and actual landslide stability analysis.Through reasonable theoretical analysis,the Su slice method provides a reliable approach for determining the inter-slice force inclination angle that can be used in slice analysis to accurately analyse,calculate,and evaluate the stability of landslides.However,the Su slice method requires further research and analysis,especially in terms of the parameter values sinλbiandρ.In this study,we investigated more accurate methods for calculating the parameters sinλbiandρ.In addition,an adjustment coefficient(μ)was introduced to improve the solution method for the inter-slice force inclination angle.The inter-slice force inclination and safety factors of three landslides with arc-shaped slip surfaces and one landslide with a polyline-shaped slip surface were analysed and compared using the different slice methods.The improved inter-slice force inclination not only satisfies the calculation of static force equilibrium condition but also satisfies the calculation of both the force and moment equilibrium conditions.The improved method for calculating inter-slice force inclination presented the best correlation.The safety factors calculated using the improved Su slice method were close to those obtained using numerical simulations and the Morgenstern-Price method.Despite negligible differences among the safety factors calculated using the Su slice,improved Su slice,and M-P methods,the accuracy of the improved Su slice method was better than the M-P method in terms of inter-slice force inclination angles which can be useful to improve protection engineering design.展开更多
There are two methods on option pricing, no-arbitrage and equilibrium analysis. We construct a simple economy with continuous consumption, in which we “endogenize” the stochastic process of prices in the option pric...There are two methods on option pricing, no-arbitrage and equilibrium analysis. We construct a simple economy with continuous consumption, in which we “endogenize” the stochastic process of prices in the option pricing model based on no-arbitrage analysis. With constant relative risk aversion type utility function assumption, we present Merton (1973) option pricing model and find the consistency of the model with a general equilibrium framework. We extend the model to the market with m securities and it turns out similar results.展开更多
Static stability analysis of the two-point mooring autonomous underwater vehicle(AUV) is presented.The mathematic model is a set of equilibrium equations describing the attitude of the AUV.The mooring lines are regard...Static stability analysis of the two-point mooring autonomous underwater vehicle(AUV) is presented.The mathematic model is a set of equilibrium equations describing the attitude of the AUV.The mooring lines are regarded as inelastic catenaries,and five degrees of freedom of AUV are considered.The stability of the system is represented by inequality conditions between several physical quantities and the corresponding limitations.We analyze stability of the prime AUV and find that the AUV has a flow-following tendency,which makes the swing angle big.The result shows that the two-point mooring AUV can remain stable under 2.5 kn ocean current speed,and it will weigh anchor when the speed is greater than 3 kn.Subsequent parametric study reveals the influence of the designing parameters on the stability.展开更多
Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed s...Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed scale because most of existing researches on the initiation mechanism of debris flow took a single slope as the main object. In order to solve this problem, this paper developed a model of debris flow forecast based on the water-soil coupling mechanism at the watershed scale. In this model, the runoff and the instable soil caused by the rainfall in a watershed is estimated by the distrib- uted hydrological model (GBHM) and an instable identification model of the unsaturated soil. Because the debris flow is a special fluid composed of soil and water and has a bigger density, the density esti- mated by the runoff and instable soil mass in a watershed under the action of a rainfall is employed as a key factor to identify the formation probability of debris flow in the forecast model. The Jiangjia Gulley, a typical debris flow valley with a several debris flow events each year, is selected as a case study watershed to test this forecast model of debris flow. According the observation data of Dongchuan Debris Flow Observation and Research Station, CAS located in Jiangjia Gulley, there were 4 debris flow events in 2006. The test results show that the accuracy of the model is satisfied.展开更多
Nowadays more and more people reside in metropolitan areas,and the impact of this phenomenon is clearly creating challenges for the environment,the economy and the society at large.It is therefore useful and instructi...Nowadays more and more people reside in metropolitan areas,and the impact of this phenomenon is clearly creating challenges for the environment,the economy and the society at large.It is therefore useful and instructive to consider the issue of optimal city size and review the literature over the past decades on optimal city size theory.Based on the progress in recent years of comparative analysis and inductive research,from both theoretical and empirical perspectives,this paper outlines the original definitions proposed for optimal city size and discusses some of the advantages and disadvantages of the various theories.The two prevailing models in the classical analysis of optimal city size,the Henry George Theorem(HGT)and the neoclassical approach,are examined later.This paper then introduces the supply oriented dynamic model(SOUDY model)and offers a plausible model for optimal city size based on the general equilibrium analysis,which is related to sustainable development.The results show that:(1)Simple optimal city size theories come from the cost-benefit analysis developed by main stream economics,and therefore cannot overcome the defect that the optimal size of cities is the same since the same production function;(2)The Henry George Theorem,which is one of the classical analysis paradigms of optimal city size,has been used more frequently in recent years to research the issues of optimal tax and public goods and has gradually lost its connection to the topic of optimal city size;(3)The neoclassical approach to optimal city size consists of externalities influencing optimal city size,the equilibrium and optimal models for city size,the optimal town,product variety and city size distribution.This kind of research is still in the mainstream of the study of optimal city size.Compared to single optimal city size,more attention is paid to the optimal distribution of city size;and(4)The supply-oriented dynamic model allows for the integration of a spatial dimension into the economic research of optimal city size,and the constraint between city level and city size is relaxed and this has more power to explain real-world problems.At the same time,the general equilibrium analysis,as a significant economic research method,provides a new perspective for the study of optimal city size.The supply-oriented dynamic model and general equilibrium analysis are two new research paradigms that deserve more attention in the analysis of optimal city size.展开更多
An online inquiry service(OIS)is an innovative service designed to make medical re-sources more accessible,especially in remote areas.An OIS provides patients with an alternative method of consulting a physician.This ...An online inquiry service(OIS)is an innovative service designed to make medical re-sources more accessible,especially in remote areas.An OIS provides patients with an alternative method of consulting a physician.This study develops a game-theoretical queueing model to examine the impact of OISs on gatekeeping systems.In such sys-tems,patients are heterogeneous in terms of their travel costs.Here,we compare the performance of gatekeeping systems with and without an OIS.As such,we show that,owing to physicians’reduced diagnostic ability when working online,an OIS reduces pa-tients’travel costs,increases the flow of patients to specialists,increases the total waiting time in the system,and decreases the total health surplus of patients.Moreover,we demonstrate that when patients are not sensitive to delays,introducing an OIS always reduces their total cost.These findings are consistent with the intuition that patients are better off when more options are available.Interestingly,when patients are sensitive to delays,introducing an OIS may increase their total cost.This paradoxical result occurs when patients’sensitivity to delays is high,because those who consult a physician online impose negative externalities on the system by increasing the waiting cost in both the online and offline channels(which is proportional to patients’delay sensitivity).Finally,we numerically illustrate that the benefit of introducing an OIS is non-monotonic in the system parameters;thus,caution is required when designing policies to regulate OISs.展开更多
基金Supported by the National High Technology Research and Development Program of China("863"Program)(20060AA12A105)the Chinese Airspace Management Commission Researching Program(GKG200802006)~~
文摘The airspace congestion is becoming more and more severe.Although there are traffic flow management(TFM)initiatives based on CDM widely applied,how to reschedule these disrupted flights of different airlines integrating TFM initiatives and allocate the limited airspace resources to these airlines equitably and efficiently is still a problem.The air traffic management(ATM)authority aims to minimizing the systemic costs of congested airspaces.And the airlines are self-interested and profit-oriented.Being incorporated into the collaborative decision making(CDM)process,the airlines can influence the rescheduling decisions to profit themselves.The airlines maybe hide the flight information that is disadvantageous to them,but is necessary to the optimal system decision.To realize the coincidence goal between the ATM authority and airlines for the efficient,and equitable allocation of airspace resources,this paper provides an auction-based market method to solve the congestion airspace problem under the pre-tactic and tactic stage of air traffic flow management.Through a simulation experiment,the rationing results show that the auction method can decrease the total delay costs of flights in the congested airspace compared with both the first schedule first service(FSFS)tactic and the ration by schedule(RBS)tactic.Finally,the analysis results indicate that if reallocate the charges from the auction to the airlines according to the proportion of their disrupted flights,the auction mechanism can allocate the airspace resource in economy equitably and decrease the delay losses of the airlines compared with the results of the FSFS tactic.
基金Project(2013-KY-2) supported by the State Key Laboratory of Hydroscience and Engineering of Hydroscience, ChinaProject(50925931)supported by the National Funds for Distinguished Young Scientists, China
文摘Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.
文摘The recently proposed method of our research group named as directional Lyapunov exponents(DLEs) is presented. Then, DLEs are used to analyze the eigenstructure of the output phase space around the equilibrium points. Finally, the impacts of the superlattice parameter changes on the characteristics of the output chaotic signal are analyzed. The experimental results show that parameter changes of the superlattice will affect the eigenstructure around the equilibrium points in the output phase space, and DLEs are sensitive to these changes.
基金Project(51608541)supported by the National Natural Science Foundation of ChinaProject(2015M580702)supported by the Postdoctoral Science Foundation of ChinaProject(201508)supported by the Postdoctoral Science Foundation of Central South University,China
文摘In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb(M-C) strength criterion and the initial normal stress without considering the inter-slice(or inter-column) forces, the normal and shear stresses on the slip surface are assumed using some dimensionless variables, and these variables have the same numbers with the force and moment equilibrium equations of a sliding body to establish easily the linear equation groups for solving them. After these variables are determined, the normal stresses, shear stresses, and slope safety factor are also obtained using the stresses assumptions and M-C strength criterion. In the case of a three-dimensional slope stability analysis, three calculation methods, namely, a non-strict method, quasi-strict method, and strict method, can be obtained by satisfying different force and moment equilibrium conditions. Results of the comparison in the classic two- and three-dimensional slope examples show that the slope safety factors calculated using the current method and the other limit equilibrium methods are approximately equal to each other, indicating the feasibility of the current method; further, the following conclusions are obtained: 1) The current method better amends the initial normal and shear stresses acting on the slip surface, and has the identical results with using simplified Bishop method, Spencer method, and Morgenstern-Price(M-P) method; however, the stress curve of the current method is smoother than that obtained using the three abovementioned methods. 2) The current method is suitable for analyzing the two- and three-dimensional slope stability. 3) In the three-dimensional asymmetric sliding body, the non-strict method yields safer solutions, and the results of the quasi-strict method are relatively reasonable and close to those of the strict method, indicating that the quasi-strict method can be used to obtain a reliable slope safety factor.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Graduate Students of Jiangsu Province Innovation Program (No.CXZZ13_0948)the National Natural Science Foundation of China (No.51304202)the Natural Science Foundation of Jiangsu Province (No.BK20130190)
文摘Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof strata,an elastic mechanics model was established to calculate the stress applied on the coal wall.The displacement method was used to obtain the stress and deformation distributions of the coal wall.This study also researched the influence of support resistance,protective pressure to the coal wall,fracture position of the main roof and mining height on the coal wall deformation.The following conclusions are drawn:(1) The shorter the distance from the longwall face,the greater the vertical compressive stress and horizontal tensile stress borne by the coal wall.The coal wall is prone to failure in the form of compressive-shear and tension;(2) With increasing support resistance,the revolution angle of the main roof decreases linearly.As the support resistance and protective force supplied by the face guard increases,the maximum deformation of the coal wall decreases linearly;(3) As the face approaches the fracture position of the main roof,coal wall horizontal deformation increases significantly,and the coal wall is prone to instability;and(4) The best mining height of 14101 longwall face is 3.0 m.
文摘Bubonic plague is a serious bacterial disease, mainly transmitted to human beings and rodents through flea bite. However, the disease may also be transmitted upon the interaction with the infected materials or surfaces in the environment. In this study, a deterministic model for bubonic plague disease with Yersinia pestis in the environment is developed and analyzed. Conditions for existence and stability of the equilibrium points are established. Using Jacobian method disease free equilibrium (DFE) point, E<sup>0</sup> was proved to be locally asymptotically stable. The Metzler matrix method was used to prove that the DFE was globally asymptotically stable when R<sub>0</sub> < 1. By applying Lyapunov stability theory and La Salles invariant principle, we prove that the endemic equilibrium point of system is globally asymptotically stable when R<sub>0</sub> > 1. Numerical simulations are done to verify the analytical predictions. The results show that bubonic plague can effectively be controlled or even be eradicated if efforts are made to ensure that there are effective and timely control strategies.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos. 42105066, 42088101, 41975066)supported by the China Postdoctoral Science Foundation (2021M701754)+1 种基金the Postdoctoral Research Funding of Jiangsu Province (2021K052A)the Research Project of the National University of Defense Technology (ZK20-45)
文摘In this paper,a statistical method called Generalized Equilibrium Feedback Analysis(GEFA)is used to investigate the responses of the North Pacific Storm Track(NPST)in the cold season to the multi-scale oceanic variations of the Kuroshio Extension(KE)system,including its large-scale variation,oceanic front meridional shift,and mesoscale eddy activity.Results show that in the cold season from the lower to the upper troposphere,the KE large-scale variation significantly weakens the storm track activity over the central North Pacific south of 30°N.The northward shift of the KE front significantly strengthens the storm track activity over the western and central North Pacific south of 40°N,resulting in a southward shift of the NPST.In contrast,the NPST response to KE mesoscale eddy activity is not so significant and relatively shallow,which only shows some significant positive signals near the dateline in the lower and middle troposphere.Furthermore,it is found that baroclinicity and baroclinic energy conversion play an important role in the formation of the NPST response to the KE multi-scale oceanic variations.
文摘Slope failures are an inevitable aspect of economic pit slope designs in the mining industry.Large open pit guidelines and industry standards accept up to 30%of benches in open pits to collapse provided that they are controlled and that no personnel are at risk.Rigorous ground control measures including real time monitoring systems at TARP(trigger-action-response-plan)protocols are widely utilized to prevent personnel from being exposed to slope failure risks.Technology and computing capability are rapidly evolving.Aerial photogrammetry techniques using UAV(unmanned aerial vehicle)enable geotechnical engineers and engineering geologists to work faster and more safely by removing themselves from potential line-of-fire near unstable slopes.Slope stability modelling software using limit equilibrium(LE)and finite element(FE)methods in three dimensions(3D)is also becoming more accessible,user-friendly and faster to operate.These key components enable geotechnical engineers to undertake site investigations,develop geotechnical models and assess slope stability faster and in more detail with less exposure to fall of ground hazards in the field.This paper describes the rapid and robust process utilized at BHP Limited for appraising a slope failure at an iron ore mine site in the Pilbara region of Western Australia using a combination of UAV photogrammetry and 3D slope stability models in less than a shift(i.e.less than 12 h).
基金financial support through the SOL-CARE(Energy-065,2016–2019)project(JC-ENERGY-2014 first call)。
文摘Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methanol,considered as a promising renewable energy vector to substitute fossil fuel resources.Adequate operation conditions(molar feed composition,temperature and pressure)are required for the sole production of"metgas"while achieving high CH4,CO2 and H2O conversion levels.In this work,thermodynamic equilibrium analysis of CSDRM has been performed using Gibbs free energy minimization where;(i)the effect of temperature(range:200-1000℃),(ii)feed composition(stoichiometric ratio as compared to a feed under excess steam or excess carbon dioxide),(iii)pressure(range:1-20 bar)and,(iv)the presence of a gaseous diluent on coke yields,reactivity levels and selectivity towards"metgas"were investigated.Running CSDRM at a temperature of at least 800℃,a pressure of 1 bar and under a feed composition where CO2-H2O/CH4 is around 1.0,are optimum conditions for the theoretical production of"metgas"while minimizing C(S)formation for longer experimental catalytic runs.A second part of this work presents a review of the recent progresses in the design of(principally)Ni-based catalysts along with some mechanistic and kinetic modeling aspects for the targeted CSDRM reaction.As compared to noble metals,their high availability,low cost and good intrinsic activity levels are main reasons for increasing research dedications in understanding deactivation potentials and providing amelioration strategies for further development.Deactivation causes and main orientations towards designing deactivationresistant supported Ni nanoparticles are clearly addressed and analyzed.Reported procedures based on salient catalytic features(i.e.,acidity/basicity character,redox properties,oxygen mobility,metal-support interaction)and recently employed innovative tactics(such as confinement within mesoporous systems,stabilization through core shell structures or on carbide surfaces)are highlighted and their impact on Ni0reactivity and stability are discussed.The final aspect of this review encloses the major directions and trends for improving synthesis/preparation designs of Ni-based catalysts for the sake of upgrading their usage into industrially oriented combined reforming operations.
基金Supported by the Science and Technology Planning Project of Guangdong Province,China(2017A0505010362015B020235013+4 种基金2015A0202150332017B090907012)the Scientific and Technological Planning Project of Guangzhou,China(2016201604030058201704030109)Guangdong Special Support Program for Training High Level Talents(2014TQ01Z248)
文摘Thermodynamic equilibrium calculations were performed to reveal effects of interactions among Cl, S, P and other minerals on Cu migration. Our results showed that HCl(g), SO2(g) and (P2O5)2(g) were released from the sewage sludge co-incineration. Cl was found to weaken adsorption of Cu by Al2O3, CaO and Fe2O3, while S de- layed reactions of Fe2O3 and Al2O3 with Cu, with P having no effect on reactions between the minerals and Cu. Among the coupled systems ofCl, S and P, the co-existences of Cl and S, and Cl, S and P were determined to inhibit Cu volatilization, and the co-existence of Cl and P had an enhancing effect Cu migration was affected only by S in the S and P system. With the SiO2, CaO and Al2O3 system, both Cl alone and Cl and P led to failed reactions be- tween the minerals and Cu. In the systems of S, S and Cl, S and P, and S, Cl and P, the migration behavior of Cu was mainly affected by S at low temperatures and by Cl at high temperatures, whereas P had no effect on Cu mi- gration during the entire nrocess.
基金Projects(71171200,51108465,71101155)supported by the National Natural Science Foundation of China
文摘An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level programming model was proposed to model the ATR scheme optimization problem by aiming at consumer surplus maximization and overload flow minimization at the upper-level model. At the lower-level model, elastic demand, mode choice and multi-class user equilibrium assignment were synthetically optimized. A genetic algorithm involving prolonging codes was constructed, demonstrating high computing efficiency in that it dynamically includes newly-appearing overload links in the codes so as to reduce the subsequent searching range. Moreover,practical processing approaches were suggested, which may improve the operability of the model-based solutions.
文摘The selective precipitation of zinc from zinc-nickel sulfate solution with the Zn/Ni molar ratio of20:1was studied.Dropwise addition of0.5mol/L NaOH solution into the zinc-nickel sulfate solution containing0,0.01,0.02,0.03and0.04mol/L ethylene diamine tetraacetate(EDTA)as a chelating agent was done.The equilibrium analysis of precipitation pathway was performed using Visual MINTEQ program.The equilibrium analysis showed that the presence of small amounts of EDTA can prevent nickel precipitation in alkaline conditions without any negative effect on zinc precipitation.On this basis,more than90%of zinc could be precipitated as a product with about50%Zn and only0.11%Ni at pH=9.0merely as a result of the presence of0.03mol/L EDTA in the solution.The stirring time of120min after precipitation was found to be essential for more complete separation.The X-ray diffraction studies on the precipitate revealed that the precipitated phase was Zn4(OH)6SO4.4H2O.
文摘An optimum design of box cuts in soil formations is very crucial in order to obviate the major risk factors originating from the collapse of sidewalls and flooding of excavations during storm rainfall. The present paper aims to present a holistic classification of the Kalahari Formation stratigraphy in Zone 5 and define engineering properties of each lithological unit, in order to establish a safe working design. For the present objectives, collection of data was carried out through logging core from selected geotechnical boreholes drilled within vicinity of the proposed Northern mine box cut. Hydrogeological assessments and feasibility studies within the purview of study region were also considered. Geotechnical logging parameters gathered on site were derived from the Rock Mass Rating system (RMR) for design requirements [<a href="#ref1">1</a>]. Input parameters and material characteristics taken from laboratory test results provided by KCM were incorporated in the analysis. The box cut slopes were modelled in “Rocscience software” for evaluation of safety factor using “limit equilibrium method”. Slope optimization required the slope surface to be as steep as possible while maintaining an adequate factor of safety ranging from 1.5 - 1.8. For the box cut design with optimum safety, the recommended parameters are: stable slope angle—35<span style="white-space:nowrap;">°</span> - 40<span style="white-space:nowrap;">°</span>;ramp angle—8<span style="white-space:nowrap;">°</span>, depth of pit—60 meters;bench width—4.9 meters and the bench length—13.25 meters.
基金supported by National Natural Science Foundation of China 40830106the 111 Project of China (No. B07036)+1 种基金Ministry of Science and Technology of China (No. GYHY200906016)US Department of Environment (DOE 144 KQ65)
文摘Atmospheric response to SST variability was estimated using generalized equilibrium feedback analysis (GEFA) in the SST EOF space with synthesis data from an idealized climate model. Results show that the GEFA atmospheric response to the leading SST EOF modes is much more accurate and robust than the GEFA feedback matrix in physical space. Therefore, GEFA provides a practical method for assessing atmospheric response to large-scale SST anomalies in terms of the leading EOFs.
基金evolution mechanism and prevention countermeasures of the Outang landslide in the Three Gorges Reservoir Area(No.20C0023)research projectthe geological safety risk investigation,evaluation and control of key resettlement towns in the Three Gorges Reservoir Area(No.HBHDZFCG2021025)+2 种基金the National Natural Science Foundation of China(No.42077268)the Chongqing Geological Disaster Prevention and Control Center of China(No.20C0023)the open fund of state key laboratory of geohazard prevention and geoenvironment protection(No.SKLGP2020K015)。
文摘Although slice methods are simple and effective slope stability analysis approaches,they are statically indeterminate.Several modifications of the slice method,such as the Spencer,MorgensternPrice,and Chen-Morgenstern methods,are statically determinate and solvable as they assume the inter-slice force inclination angle;however,there is a small gap between the assumptions and actual landslide stability analysis.Through reasonable theoretical analysis,the Su slice method provides a reliable approach for determining the inter-slice force inclination angle that can be used in slice analysis to accurately analyse,calculate,and evaluate the stability of landslides.However,the Su slice method requires further research and analysis,especially in terms of the parameter values sinλbiandρ.In this study,we investigated more accurate methods for calculating the parameters sinλbiandρ.In addition,an adjustment coefficient(μ)was introduced to improve the solution method for the inter-slice force inclination angle.The inter-slice force inclination and safety factors of three landslides with arc-shaped slip surfaces and one landslide with a polyline-shaped slip surface were analysed and compared using the different slice methods.The improved inter-slice force inclination not only satisfies the calculation of static force equilibrium condition but also satisfies the calculation of both the force and moment equilibrium conditions.The improved method for calculating inter-slice force inclination presented the best correlation.The safety factors calculated using the improved Su slice method were close to those obtained using numerical simulations and the Morgenstern-Price method.Despite negligible differences among the safety factors calculated using the Su slice,improved Su slice,and M-P methods,the accuracy of the improved Su slice method was better than the M-P method in terms of inter-slice force inclination angles which can be useful to improve protection engineering design.
文摘There are two methods on option pricing, no-arbitrage and equilibrium analysis. We construct a simple economy with continuous consumption, in which we “endogenize” the stochastic process of prices in the option pricing model based on no-arbitrage analysis. With constant relative risk aversion type utility function assumption, we present Merton (1973) option pricing model and find the consistency of the model with a general equilibrium framework. We extend the model to the market with m securities and it turns out similar results.
基金the National Natural Science Foundation of China(No.11302176)the Special Research Fund for the Doctoral Program of Higher Education of China(No.20126102120021)
文摘Static stability analysis of the two-point mooring autonomous underwater vehicle(AUV) is presented.The mathematic model is a set of equilibrium equations describing the attitude of the AUV.The mooring lines are regarded as inelastic catenaries,and five degrees of freedom of AUV are considered.The stability of the system is represented by inequality conditions between several physical quantities and the corresponding limitations.We analyze stability of the prime AUV and find that the AUV has a flow-following tendency,which makes the swing angle big.The result shows that the two-point mooring AUV can remain stable under 2.5 kn ocean current speed,and it will weigh anchor when the speed is greater than 3 kn.Subsequent parametric study reveals the influence of the designing parameters on the stability.
基金supported by the foundation of the Research Fund for Commonweal Trades (Meteorology) (No. GYHY201006039)
文摘Debris flow forecast is an important means of disaster mitigation. However, the accuracy of the statistics-based debris flow forecast is unsatisfied while the mechanism-based forecast is unavailable at the watershed scale because most of existing researches on the initiation mechanism of debris flow took a single slope as the main object. In order to solve this problem, this paper developed a model of debris flow forecast based on the water-soil coupling mechanism at the watershed scale. In this model, the runoff and the instable soil caused by the rainfall in a watershed is estimated by the distrib- uted hydrological model (GBHM) and an instable identification model of the unsaturated soil. Because the debris flow is a special fluid composed of soil and water and has a bigger density, the density esti- mated by the runoff and instable soil mass in a watershed under the action of a rainfall is employed as a key factor to identify the formation probability of debris flow in the forecast model. The Jiangjia Gulley, a typical debris flow valley with a several debris flow events each year, is selected as a case study watershed to test this forecast model of debris flow. According the observation data of Dongchuan Debris Flow Observation and Research Station, CAS located in Jiangjia Gulley, there were 4 debris flow events in 2006. The test results show that the accuracy of the model is satisfied.
基金The Scientific Research Project of Hunan Education Department(18C0964)The 2016 Scientific Research Fund Project for Young Teachers of Hunan University of Finance and Economics(Q201604)
文摘Nowadays more and more people reside in metropolitan areas,and the impact of this phenomenon is clearly creating challenges for the environment,the economy and the society at large.It is therefore useful and instructive to consider the issue of optimal city size and review the literature over the past decades on optimal city size theory.Based on the progress in recent years of comparative analysis and inductive research,from both theoretical and empirical perspectives,this paper outlines the original definitions proposed for optimal city size and discusses some of the advantages and disadvantages of the various theories.The two prevailing models in the classical analysis of optimal city size,the Henry George Theorem(HGT)and the neoclassical approach,are examined later.This paper then introduces the supply oriented dynamic model(SOUDY model)and offers a plausible model for optimal city size based on the general equilibrium analysis,which is related to sustainable development.The results show that:(1)Simple optimal city size theories come from the cost-benefit analysis developed by main stream economics,and therefore cannot overcome the defect that the optimal size of cities is the same since the same production function;(2)The Henry George Theorem,which is one of the classical analysis paradigms of optimal city size,has been used more frequently in recent years to research the issues of optimal tax and public goods and has gradually lost its connection to the topic of optimal city size;(3)The neoclassical approach to optimal city size consists of externalities influencing optimal city size,the equilibrium and optimal models for city size,the optimal town,product variety and city size distribution.This kind of research is still in the mainstream of the study of optimal city size.Compared to single optimal city size,more attention is paid to the optimal distribution of city size;and(4)The supply-oriented dynamic model allows for the integration of a spatial dimension into the economic research of optimal city size,and the constraint between city level and city size is relaxed and this has more power to explain real-world problems.At the same time,the general equilibrium analysis,as a significant economic research method,provides a new perspective for the study of optimal city size.The supply-oriented dynamic model and general equilibrium analysis are two new research paradigms that deserve more attention in the analysis of optimal city size.
基金This research is supported by the National Natural Science Foundation of China(NSFC:71731006,71801096,71925002,71971080,71601077,and 71571070)the Project funded by China Postdoctoral Science Foundation under 2019M650202+1 种基金the Project supported by GDHVPS(2017)the Fundamental Research Funds for the Central Universities,SCUT(x2gs/D2191820).
文摘An online inquiry service(OIS)is an innovative service designed to make medical re-sources more accessible,especially in remote areas.An OIS provides patients with an alternative method of consulting a physician.This study develops a game-theoretical queueing model to examine the impact of OISs on gatekeeping systems.In such sys-tems,patients are heterogeneous in terms of their travel costs.Here,we compare the performance of gatekeeping systems with and without an OIS.As such,we show that,owing to physicians’reduced diagnostic ability when working online,an OIS reduces pa-tients’travel costs,increases the flow of patients to specialists,increases the total waiting time in the system,and decreases the total health surplus of patients.Moreover,we demonstrate that when patients are not sensitive to delays,introducing an OIS always reduces their total cost.These findings are consistent with the intuition that patients are better off when more options are available.Interestingly,when patients are sensitive to delays,introducing an OIS may increase their total cost.This paradoxical result occurs when patients’sensitivity to delays is high,because those who consult a physician online impose negative externalities on the system by increasing the waiting cost in both the online and offline channels(which is proportional to patients’delay sensitivity).Finally,we numerically illustrate that the benefit of introducing an OIS is non-monotonic in the system parameters;thus,caution is required when designing policies to regulate OISs.