Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi...Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.展开更多
Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of th...Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of the mechanical system was presented.By using the MSC.Software products the following exemplary computer simulations were made: dynamic load impact on the hydraulic leg as well as effectiveness of the hydraulic leg protection against overload with help of gas accumulator.展开更多
Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, whi...Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, which may cause huge economic loss. In this study, an innovative isolator for safeguarding the vibration sensitive equipment, namely, the static dynamics interchangeable^all pendulum system (SDI-BPS) is proposed and investigated to examine its protective capability for the vibration sensitive equipment during earthquakes through a series of tri-directional shaking table tests. The experimental results illustrate that the SDI-BPS isolator can provide significant damping to rolling types of base isolation systems for reducing the bearing displacement and size, and avoid the stress concentration, which can cause damage or scratches on the rolling surface of the isolator, to prolong its life span of service. The SDI-BPS isolator also provides excellent capability in protecting the vibration sensitive equipment and exhibits a stable behavior under long terms of service loadings and earthquakes.展开更多
The optimal replacement model for the repairable queueing system con-sisting of single electrical equipment of automatic steel rolling is studied. Assumingthat the equipment after repair is not “as goed as new” , by...The optimal replacement model for the repairable queueing system con-sisting of single electrical equipment of automatic steel rolling is studied. Assumingthat the equipment after repair is not “as goed as new” , by using geometric pro-cess, we take the n展开更多
In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the ...In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the influences of different built-in test equipments,maintenance time and error probabilities on the system usability are evaluated.The simulation results showthat they effect on the system differently.The simulation method of complex system based on Simulink provides a technique approach to research the effects of BITon the system and select BITand test strategy.展开更多
Process equipment placing in industrial premises leads to essential change of room acoustic characteristics: mean length of sound rays’ free runs, reverberation time and mean absorption factor in a room. The changes ...Process equipment placing in industrial premises leads to essential change of room acoustic characteristics: mean length of sound rays’ free runs, reverberation time and mean absorption factor in a room. The changes influence distribution of the reflected sound energy in premise volume. Failure to take account of the given circumstance results in errors at definition of sound pressure levels and an estimation of efficiency of building-acoustic measures of noise abatement. In the paper the results of computer modeling of acoustic processes in premises with the process equipment are considered and influence of the equipment on a sound absorption indoors is analyzed. The computer simulation is carried out on the basis of the ray tracing method with taking into account rays’ energy distribution in a room. It is shown that such approach allows determining objectively the integral acoustic characteristics of industrial premises, takes into account influencing to them the room parameters, the presence and scattering characteristics of the equipment and makes more accurate the equations putting into engineering practice.展开更多
We show a scheme to distribute the entanglement by using three-mode separable Gaussian state prepared with imperfect equipments. The scheme achieves the aim that the entanglement is distributed between two distant par...We show a scheme to distribute the entanglement by using three-mode separable Gaussian state prepared with imperfect equipments. The scheme achieves the aim that the entanglement is distributed between two distant parties with only Gaussian operations and linear optics elements. Moreover, we analyse the logarithmic negativity of the entanglement shared between the two parties when the systems are imperfect and arrive at the conclusion that the logarithmic negativity is asymptotically stable with fluctuations within a certain space range.展开更多
A new kind of hot sand cooling equipment with vertical spouted-fluidized bed is developed in this paper. It is similar to the traditional horizontal vibrating fluidized boiling cooler in principle but different from i...A new kind of hot sand cooling equipment with vertical spouted-fluidized bed is developed in this paper. It is similar to the traditional horizontal vibrating fluidized boiling cooler in principle but different from it in structure. The processing principle of the cooler is analyzed. The influence of main structural and processing parameters on the cooling effect and its mechanism are researched. Other characteristics of the cooler are discussed also. Experiment results show that the cooling efficiency η is equal to or larger than 83%, the temperature of output sand is less than 40℃ with the temperature of input sand is about between 80 and 90℃, and the productivity is 5t/ (h·m)展开更多
Original equipment manufacturers(OEM) have never been so important and powerful as it is today in garment manufacturing industry.The OEMsupplier's production decisions always have a great impact on the market perf...Original equipment manufacturers(OEM) have never been so important and powerful as it is today in garment manufacturing industry.The OEMsupplier's production decisions always have a great impact on the market performance and the profits of a garment brand manufacturer.With constrained capacity and multiply buyers,howto make reasonable production decisions is an urgent problem for OEMsuppliers.A price discount model with a single OEMsupplier and two buyers is proposed to deal with the problem.Based on this model,the OEMsupplier could satisfy buyers' demands and guarantee their profits as well through adjusting price and delivery frequency.A numerical example validates the validity of the model.展开更多
According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we c...According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we can obtain the possible achievements of available equipment combinations under certain geological situations of fully-mechanized coal mining faces. Then theory of fuzzy selection is applied to evaluate the performance of each equipment combination. By detailed empirical analysis, this model integrates the functions of forecasting mining faces' achievements and selecting optimal equipment combination and is helpful to the decision of equipment combination for fully-mechanized coal mining.展开更多
The power infrastructure of the power system is massive in size and dispersed throughout the system.Therefore,how to protect the information security in the operation and maintenance of power equipment is a difficult ...The power infrastructure of the power system is massive in size and dispersed throughout the system.Therefore,how to protect the information security in the operation and maintenance of power equipment is a difficult problem.This paper proposes an improved time-stamped blockchain technology biometric fuzzy feature for electrical equipment maintenance.Compared with previous blockchain transactions,the time-stamped fuzzy biometric signature proposed in this paper overcomes the difficulty that the key is easy to be stolen by hackers and can protect the security of information during operation and maintenance.Finally,the effectiveness of the proposed method is verified by experiments.展开更多
Moving analogy target is a key component of the performance testing system in TV tracking equipment. A new method is provided to produce the moving analogy target whose motion speed, track, contrast and size can be va...Moving analogy target is a key component of the performance testing system in TV tracking equipment. A new method is provided to produce the moving analogy target whose motion speed, track, contrast and size can be varied. The video signal transformed by video switching card is used to test the performances of the electronic box of TV tracking equipment. These performances include minimal tracking contrast, minimal size of tracking target, maximal tracking speed and capture time.展开更多
Gamma scanning is one of the most common nuclear techniques on troubleshooting industrial equipments like distillation columns and reactors. With a very simple concept, the technique is easy to implement. Searching fo...Gamma scanning is one of the most common nuclear techniques on troubleshooting industrial equipments like distillation columns and reactors. With a very simple concept, the technique is easy to implement. Searching for a competitive edge the industry has been long developing solutions to achieve better results. On the last decades, significant development has been done with the advent of new equipments, electronics, portable computers and software. Continuous scanning and wireless detection systems are examples of successful field solutions, while new software aid on reporting and data presentation. However the type and quality of the results itself has not dramatically changed since its beginning. A scan profile is simple to understand, although the process to build it can be very complex as it requires a specific blend of knowledge and abilities. Process engineering, chemical engineering, internal hydraulic project, nuclear engineering and field abilities are pre requisites for of any scan specialist. Correct data gathering, interpretation and reporting are abilities often difficult to match or requires a long time of training. The industry faces a similar difficult on the customer side, as it is always necessary to train end users to understand a report and how to use its best. This paper describes our effort on developing a new approach on the gamma scan test using image reconstruction techniques that would result on a graphic image rather than a XY plot. Direct and easier to understand, a report with graphic images would be also be accessible to a wider audience, not limited to the customers experienced with gamma scan interpretation.展开更多
Recently the State Council decided to extend the period ofduty exemption for imports of equipment and raw materials by foreign-invested enterprises below US$30 million.In order to administrate import and export activi...Recently the State Council decided to extend the period ofduty exemption for imports of equipment and raw materials by foreign-invested enterprises below US$30 million.In order to administrate import and export activities in light ofinternational practice and apply a unified, fair and standardizedpolicy toward import duties, the State Council, on December28,1995, decided to reform and adjust the policies of import duties by fairly significant reduction of the overall import tariff leveland elimination of preferences of import-duty exemption for mostimport items, which was also applicable to imports of equipmentand raw materials by foreign-invested enterprises set up since April1st, 1996. At the same time, with a view to maintaining the policycontinuity and relative stability, those enterprises established before March 31, 1996 were allowed an extended duty-exemptionperiod of one to two years for importation of equipment and rawmaterials(referring to construction materials, etc.) if such importswere below the value of their total investments, and for展开更多
The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneve...The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.展开更多
The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is ...The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel.展开更多
Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in s...Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in surface light intensity caused by object vibration and provide a visual description of vibration behavior.Based on the analysis of the principle underlying the transformation of vibration behavior into event flow data by an event sensor,this paper proposes an algorithm to reconstruct event flow data into a relationship correlating vibration displacement and time to extract the amplitude-frequency characteristics of the vibration signal.A vibration measurement test platform is constructed,and feasibility and effectiveness tests are performed for the vibration motor and other power equipment.The results show that event-sensing technology can effectively perceive the surface vibration behavior of power and provide a wide dynamic range.Furthermore,the vibration measurement and visualization algorithm for power equipment constructed using this technology offers high measurement accuracy and efficiency.The results of this study provide a new noncontact and visual method for locating vibrations and performing amplitude-frequency analysis on power equipment.展开更多
Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test b...Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test bench is combined with meas-ured or predicted transfer functions.It is important,however,to allow for installation effects due to shielding by fairings or the train body.In the current work,fast-running analytical models are developed to determine these installation effects.The model for roof-mounted sources takes account of diffraction at the corner of the train body or fairing,using a barrier model.For equipment mounted under the train,the acoustic propagation from the sides of the source is based on free-field Green’s functions.The bottom surfaces are assumed to radiate initially into a cavity under the train,which is modelled with a simple diffuse field approach.The sound emitted from the gaps at the side of the cavity is then assumed to propagate to the receivers according to free-field Green’s functions.Results show good agreement with a 2.5D boundary element model and with measurements.Modelling uncertainty and parametric uncertainty are evaluated.The largest variability occurs due to the height and impedance of the ground,especially for a low receiver.This leads to standard deviations of up to 4 dB at low frequencies.For the roof-mounted sources,uncertainty over the location of the corner used in the equivalent barrier model can also lead to large standard deviations.展开更多
The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology pro...The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology provided by deep learning-based video surveillance for unmanned inspection of electrical equipment,this paper uses the bottleneck attention module(BAM)attention mechanism to improve the Solov2 model and proposes a new electrical equipment segmentation mode.Firstly,the BAM attention mechanism is integrated into the feature extraction network to adaptively learn the correlation between feature channels,thereby improving the expression ability of the feature map;secondly,the weighted sum of CrossEntropy Loss and Dice loss is designed as the mask loss to improve the segmentation accuracy and robustness of the model;finally,the non-maximal suppression(NMS)algorithm to better handle the overlap problem in instance segmentation.Experimental results show that the proposed method achieves an average segmentation accuracy of mAP of 80.4% on three types of electrical equipment datasets,including transformers,insulators and voltage transformers,which improve the detection accuracy by more than 5.7% compared with the original Solov2 model.The segmentation model proposed can provide a focusing technical means for the intelligent management of power systems.展开更多
文摘Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.
文摘Procedures of preparation of numerical analysis,consisting in a simulation of cooperation of three different media: steel,liquid and gas undergoes dynamic load were discussed.Modelling of the initial static load of the mechanical system was presented.By using the MSC.Software products the following exemplary computer simulations were made: dynamic load impact on the hydraulic leg as well as effectiveness of the hydraulic leg protection against overload with help of gas accumulator.
基金the Science Council in Taiwan for the financial support(Project No.NSC 95- 2221-E-035-1120)
文摘Recently, the high-tech industry has become a key industry for economic development in many countries. However, vibration sensitive equipment located in these industrial buildings is vulnerable during earthquakes, which may cause huge economic loss. In this study, an innovative isolator for safeguarding the vibration sensitive equipment, namely, the static dynamics interchangeable^all pendulum system (SDI-BPS) is proposed and investigated to examine its protective capability for the vibration sensitive equipment during earthquakes through a series of tri-directional shaking table tests. The experimental results illustrate that the SDI-BPS isolator can provide significant damping to rolling types of base isolation systems for reducing the bearing displacement and size, and avoid the stress concentration, which can cause damage or scratches on the rolling surface of the isolator, to prolong its life span of service. The SDI-BPS isolator also provides excellent capability in protecting the vibration sensitive equipment and exhibits a stable behavior under long terms of service loadings and earthquakes.
文摘The optimal replacement model for the repairable queueing system con-sisting of single electrical equipment of automatic steel rolling is studied. Assumingthat the equipment after repair is not “as goed as new” , by using geometric pro-cess, we take the n
文摘In order to research the effects of built-in test(BIT) on the system and select BITand test strategy,the complex repairable systems with BITequipment are modeled and simulated by using Simulink.Based on the model,the influences of different built-in test equipments,maintenance time and error probabilities on the system usability are evaluated.The simulation results showthat they effect on the system differently.The simulation method of complex system based on Simulink provides a technique approach to research the effects of BITon the system and select BITand test strategy.
文摘Process equipment placing in industrial premises leads to essential change of room acoustic characteristics: mean length of sound rays’ free runs, reverberation time and mean absorption factor in a room. The changes influence distribution of the reflected sound energy in premise volume. Failure to take account of the given circumstance results in errors at definition of sound pressure levels and an estimation of efficiency of building-acoustic measures of noise abatement. In the paper the results of computer modeling of acoustic processes in premises with the process equipment are considered and influence of the equipment on a sound absorption indoors is analyzed. The computer simulation is carried out on the basis of the ray tracing method with taking into account rays’ energy distribution in a room. It is shown that such approach allows determining objectively the integral acoustic characteristics of industrial premises, takes into account influencing to them the room parameters, the presence and scattering characteristics of the equipment and makes more accurate the equations putting into engineering practice.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.60873191,60903152,and 60821001)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos.200800131016 and 20090005110010)+1 种基金the Beijing Nova Program,China (Grant No.2008B51)the Key Program of Ministry of Education of China (Grant No.109014)
文摘We show a scheme to distribute the entanglement by using three-mode separable Gaussian state prepared with imperfect equipments. The scheme achieves the aim that the entanglement is distributed between two distant parties with only Gaussian operations and linear optics elements. Moreover, we analyse the logarithmic negativity of the entanglement shared between the two parties when the systems are imperfect and arrive at the conclusion that the logarithmic negativity is asymptotically stable with fluctuations within a certain space range.
文摘A new kind of hot sand cooling equipment with vertical spouted-fluidized bed is developed in this paper. It is similar to the traditional horizontal vibrating fluidized boiling cooler in principle but different from it in structure. The processing principle of the cooler is analyzed. The influence of main structural and processing parameters on the cooling effect and its mechanism are researched. Other characteristics of the cooler are discussed also. Experiment results show that the cooling efficiency η is equal to or larger than 83%, the temperature of output sand is less than 40℃ with the temperature of input sand is about between 80 and 90℃, and the productivity is 5t/ (h·m)
基金Innovative Methods of Science and Technology of China(No.SQ2015IM3600021)Tianjin Planning Office of Philosophy and Social Science,China(No.TJGL16-019)
文摘Original equipment manufacturers(OEM) have never been so important and powerful as it is today in garment manufacturing industry.The OEMsupplier's production decisions always have a great impact on the market performance and the profits of a garment brand manufacturer.With constrained capacity and multiply buyers,howto make reasonable production decisions is an urgent problem for OEMsuppliers.A price discount model with a single OEMsupplier and two buyers is proposed to deal with the problem.Based on this model,the OEMsupplier could satisfy buyers' demands and guarantee their profits as well through adjusting price and delivery frequency.A numerical example validates the validity of the model.
文摘According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we can obtain the possible achievements of available equipment combinations under certain geological situations of fully-mechanized coal mining faces. Then theory of fuzzy selection is applied to evaluate the performance of each equipment combination. By detailed empirical analysis, this model integrates the functions of forecasting mining faces' achievements and selecting optimal equipment combination and is helpful to the decision of equipment combination for fully-mechanized coal mining.
基金This research was funded by science and technology project of State Grid JiangSu Electric Power Co.,Ltd.(Research on Key Technologies of power network security digital identity authentication and management and control based on blockchain,Grant No.is J2021021).
文摘The power infrastructure of the power system is massive in size and dispersed throughout the system.Therefore,how to protect the information security in the operation and maintenance of power equipment is a difficult problem.This paper proposes an improved time-stamped blockchain technology biometric fuzzy feature for electrical equipment maintenance.Compared with previous blockchain transactions,the time-stamped fuzzy biometric signature proposed in this paper overcomes the difficulty that the key is easy to be stolen by hackers and can protect the security of information during operation and maintenance.Finally,the effectiveness of the proposed method is verified by experiments.
文摘Moving analogy target is a key component of the performance testing system in TV tracking equipment. A new method is provided to produce the moving analogy target whose motion speed, track, contrast and size can be varied. The video signal transformed by video switching card is used to test the performances of the electronic box of TV tracking equipment. These performances include minimal tracking contrast, minimal size of tracking target, maximal tracking speed and capture time.
文摘Gamma scanning is one of the most common nuclear techniques on troubleshooting industrial equipments like distillation columns and reactors. With a very simple concept, the technique is easy to implement. Searching for a competitive edge the industry has been long developing solutions to achieve better results. On the last decades, significant development has been done with the advent of new equipments, electronics, portable computers and software. Continuous scanning and wireless detection systems are examples of successful field solutions, while new software aid on reporting and data presentation. However the type and quality of the results itself has not dramatically changed since its beginning. A scan profile is simple to understand, although the process to build it can be very complex as it requires a specific blend of knowledge and abilities. Process engineering, chemical engineering, internal hydraulic project, nuclear engineering and field abilities are pre requisites for of any scan specialist. Correct data gathering, interpretation and reporting are abilities often difficult to match or requires a long time of training. The industry faces a similar difficult on the customer side, as it is always necessary to train end users to understand a report and how to use its best. This paper describes our effort on developing a new approach on the gamma scan test using image reconstruction techniques that would result on a graphic image rather than a XY plot. Direct and easier to understand, a report with graphic images would be also be accessible to a wider audience, not limited to the customers experienced with gamma scan interpretation.
文摘Recently the State Council decided to extend the period ofduty exemption for imports of equipment and raw materials by foreign-invested enterprises below US$30 million.In order to administrate import and export activities in light ofinternational practice and apply a unified, fair and standardizedpolicy toward import duties, the State Council, on December28,1995, decided to reform and adjust the policies of import duties by fairly significant reduction of the overall import tariff leveland elimination of preferences of import-duty exemption for mostimport items, which was also applicable to imports of equipmentand raw materials by foreign-invested enterprises set up since April1st, 1996. At the same time, with a view to maintaining the policycontinuity and relative stability, those enterprises established before March 31, 1996 were allowed an extended duty-exemptionperiod of one to two years for importation of equipment and rawmaterials(referring to construction materials, etc.) if such importswere below the value of their total investments, and for
基金supported by the National Natural Science Foundation of China(No.52174296)the Key Laboratory of Metallurgical Industry Safety&Risk Prevention and Control,Ministry of Emergency Management,China.
文摘The safety and longevity of key blast furnace(BF)equipment determine the stable and low-carbon production of iron.This pa-per presents an analysis of the heat transfer characteristics of these components and the uneven distribution of cooling water in parallel pipes based on hydrodynamic principles,discusses the feasible methods for the improvement of BF cooling intensity,and reviews the pre-paration process,performance,and damage characteristics of three key equipment pieces:coolers,tuyeres,and hearth refractories.Fur-thermoere,to attain better control of these critical components under high-temperature working conditions,we propose the application of optimized technologies,such as BF operation and maintenance technology,self-repair technology,and full-lifecycle management techno-logy.Finally,we propose further researches on safety assessments and predictions for key BF equipment under new operating conditions.
基金Smart Integration Key Technologies and Application Demonstrations of Large Scale Underground Space Disaster Prevention and Reduction in Guangzhou International Financial City([2021]–KJ058).
文摘The specialized equipment utilized in long-line tunnel engineering is evolving towards large-scale,multifunctional,and complex orientations.The vibration caused by the high-frequency units during regular operation is supported by the foundation of the units,and the magnitude of vibration and the operating frequency fluctuate in different engineering contexts,leading to variations in the dynamic response of the foundation.The high-frequency units yield significantly diverse outcomes under different startup conditions and times,resulting in failure to meet operational requirements,influencing the normal function of the tunnel,and causing harm to the foundation structure,personnel,and property in severe cases.This article formulates a finite element numerical computation model for solid elements using three-dimensional elastic body theory and integrates field measurements to substantiate and ascertain the crucial parameter configurations of the finite element model.By proposing a comprehensive startup timing function for high-frequency dynamic machines under different startup conditions,simulating the frequency andmagnitude variations during the startup process,and suggesting functions for changes in frequency and magnitude,a simulated startup schedule function for high-frequency machines is created through coupling.Taking into account the selection of the transient dynamic analysis step length,the dynamic response results for the lower dynamic foundation during its fundamental frequency crossing process are obtained.The validation checks if the structural magnitude surpasses the safety threshold during the critical phase of unit startup traversing the structural resonance region.The design recommendations for high-frequency units’dynamic foundations are provided,taking into account the startup process of the machine and ensuring the safe operation of the tunnel.
基金supported by the National Key Research and Development Program of China(No.2023YFB2604600).
文摘Vibration measurements can be used to evaluate the operation status of power equipment and are widely applied in equipment quality inspection and fault identification.Event-sensing technology can sense the change in surface light intensity caused by object vibration and provide a visual description of vibration behavior.Based on the analysis of the principle underlying the transformation of vibration behavior into event flow data by an event sensor,this paper proposes an algorithm to reconstruct event flow data into a relationship correlating vibration displacement and time to extract the amplitude-frequency characteristics of the vibration signal.A vibration measurement test platform is constructed,and feasibility and effectiveness tests are performed for the vibration motor and other power equipment.The results show that event-sensing technology can effectively perceive the surface vibration behavior of power and provide a wide dynamic range.Furthermore,the vibration measurement and visualization algorithm for power equipment constructed using this technology offers high measurement accuracy and efficiency.The results of this study provide a new noncontact and visual method for locating vibrations and performing amplitude-frequency analysis on power equipment.
基金The work described here has been supported by the TRANSIT project(funded by EU Horizon 2020 and the Europe’s Rail Joint Undertaking under grant agreement 881771).
文摘Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test bench is combined with meas-ured or predicted transfer functions.It is important,however,to allow for installation effects due to shielding by fairings or the train body.In the current work,fast-running analytical models are developed to determine these installation effects.The model for roof-mounted sources takes account of diffraction at the corner of the train body or fairing,using a barrier model.For equipment mounted under the train,the acoustic propagation from the sides of the source is based on free-field Green’s functions.The bottom surfaces are assumed to radiate initially into a cavity under the train,which is modelled with a simple diffuse field approach.The sound emitted from the gaps at the side of the cavity is then assumed to propagate to the receivers according to free-field Green’s functions.Results show good agreement with a 2.5D boundary element model and with measurements.Modelling uncertainty and parametric uncertainty are evaluated.The largest variability occurs due to the height and impedance of the ground,especially for a low receiver.This leads to standard deviations of up to 4 dB at low frequencies.For the roof-mounted sources,uncertainty over the location of the corner used in the equivalent barrier model can also lead to large standard deviations.
基金Jilin Science and Technology Development Plan Project(No.20200403075SF)Doctoral Research Start-Up Fund of Northeast Electric Power University(No.BSJXM-2018202).
文摘The current existing problem of deep learning framework for the detection and segmentation of electrical equipment is dominantly related to low precision.Because of the reliable,safe and easy-to-operate technology provided by deep learning-based video surveillance for unmanned inspection of electrical equipment,this paper uses the bottleneck attention module(BAM)attention mechanism to improve the Solov2 model and proposes a new electrical equipment segmentation mode.Firstly,the BAM attention mechanism is integrated into the feature extraction network to adaptively learn the correlation between feature channels,thereby improving the expression ability of the feature map;secondly,the weighted sum of CrossEntropy Loss and Dice loss is designed as the mask loss to improve the segmentation accuracy and robustness of the model;finally,the non-maximal suppression(NMS)algorithm to better handle the overlap problem in instance segmentation.Experimental results show that the proposed method achieves an average segmentation accuracy of mAP of 80.4% on three types of electrical equipment datasets,including transformers,insulators and voltage transformers,which improve the detection accuracy by more than 5.7% compared with the original Solov2 model.The segmentation model proposed can provide a focusing technical means for the intelligent management of power systems.