Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural...Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for onedimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom(MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom(DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.展开更多
In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional(2-D) periodic cellular material to capture its non-local properties and to explain the ...In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional(2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended averaging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell.In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellular solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.展开更多
We present an orthogonal matrix outer product decomposition for the fourth-order conjugate partial-symmetric(CPS)tensor and show that the greedy successive rank-one approximation(SROA)algorithm can recover this decomp...We present an orthogonal matrix outer product decomposition for the fourth-order conjugate partial-symmetric(CPS)tensor and show that the greedy successive rank-one approximation(SROA)algorithm can recover this decomposition exactly.Based on this matrix decomposition,the CP rank of CPS tensor can be bounded by the matrix rank,which can be applied to low-rank tensor completion.Additionally,we give the rank-one equivalence property for the CPS tensor based on the SVD of matrix,which can be applied to the rank-one approximation for CPS tensors.展开更多
基金National Natural Science Foundation of China(51208296&51478343)Shanghai Committee of Science and Technology(13231200503)+2 种基金Fundamental Research Funds for the Central Universities(2013KJ095&101201438)Shanghai Educational Development Foundation(13CG17)National Key Technology R&D Program(2012BAK24B04)
文摘Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for onedimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom(MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom(DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.
文摘In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional(2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended averaging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell.In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellular solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.
基金funded by the National Natural Science Foundation of China(Nos.11671217 and 12071234)Key Program of Natural Science Foundation of Tianjin,China(No.21JCZDJC00220).
文摘We present an orthogonal matrix outer product decomposition for the fourth-order conjugate partial-symmetric(CPS)tensor and show that the greedy successive rank-one approximation(SROA)algorithm can recover this decomposition exactly.Based on this matrix decomposition,the CP rank of CPS tensor can be bounded by the matrix rank,which can be applied to low-rank tensor completion.Additionally,we give the rank-one equivalence property for the CPS tensor based on the SVD of matrix,which can be applied to the rank-one approximation for CPS tensors.