In this paper, we present an improved high-frequency equivalent circuit for SiGe heterojunction bipolar transistors(HBTs) with a CBE layout, where we consider the distributed effects along the base region. The actua...In this paper, we present an improved high-frequency equivalent circuit for SiGe heterojunction bipolar transistors(HBTs) with a CBE layout, where we consider the distributed effects along the base region. The actual device structure is divided into three parts: a link base region under a spacer oxide, an intrinsic transistor region under the emitter window,and an extrinsic base region. Each region is considered as a two-port network, and is composed of a distributed resistance and capacitance. We solve the admittance parameters by solving the transmission-line equation. Then, we obtain the smallsignal equivalent circuit depending on the reasonable approximations. Unlike previous compact models, in our proposed model, we introduce an additional internal base node, and the intrinsic base resistance is shifted into this internal base node,which can theoretically explain the anomalous change in the intrinsic bias-dependent collector resistance in the conventional compact model.展开更多
In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional(2-D) periodic cellular material to capture its non-local properties and to explain the ...In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional(2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended averaging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell.In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellular solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.展开更多
Influencing factors, and variations and trends of Antarctic ozone hole in recent decades are analyzed, and sudden change processes of ozone at Zhongshan station and the effect of atmospheric dynamic processes on ozone...Influencing factors, and variations and trends of Antarctic ozone hole in recent decades are analyzed, and sudden change processes of ozone at Zhongshan station and the effect of atmospheric dynamic processes on ozone changes are also discussed by using the satellite ozone data and the ground-measured ozone data at two Antarctic stations as well as the NCEP/NCAR reanalysis data. The results show that equivalent effective stratospheric chlorine (EESC) and stratospheric temperature are two important factors influencing the ozone hole. The column ozone at Zhongshan and Syowa stations is significantly related with EESC and stratospheric temperature, which means that even though the two stations are both located on the edge of the ozone hole, EESC and stratospheric temperature still played a very important role in column ozone changes, and mean while verifies that EESC is applicable on the coast of east Antarctic continent. Decadal changes in EESC are similar with those of the ozone hole, and inter-annual variations of ozone are closely related with stratospheric temperature. Based on the relation of EESC and ozone hole size, it can be projected that the ozone hole size will gradually reduce to the 1980's level from 2010 to around 2070. Of course there might exist many uncertainties in the projection, which therefore needs to be further studied.展开更多
The effect of wall temperature on the characteristics of random combustion of micro organic particles with recirculation was investigated. The effect of recirculating in micro-combustors is noticeable, hence it is nec...The effect of wall temperature on the characteristics of random combustion of micro organic particles with recirculation was investigated. The effect of recirculating in micro-combustors is noticeable, hence it is necessary to present a model to describe the combustion process in these technologies. Recirculation phenomenon is evaluated by entering the exhausted heat from the post flam zone into the preheat zone. In this work, for modeling of random situation at the flame front, the source term in the equation of energy was modeled considering random situation for volatizing of particles in preheat zone. The comparison of obtained results from the proposed model by experimental data regards that the random model has a better agreement with experimental data than non-random model. Also, according to the results obtained by this model, wall temperature affects the amount of heat recirculation directly and higher values of wall temperature will lead to higher amounts of burning velocity and flame temperature.展开更多
In this work, the electronic mass stopping power and the range of protons in some biological human body parts (Water, Muscle, Skeletal and Bone, Cortical) were calculated in the energy range of protons 0.04 to 200 MeV...In this work, the electronic mass stopping power and the range of protons in some biological human body parts (Water, Muscle, Skeletal and Bone, Cortical) were calculated in the energy range of protons 0.04 to 200 MeV using the theory of Bethe-Bloch formula as giving in the references. All these calculations were done using Matlab program. The data related to the densities, average atomic number to mass number and excitation energies for the present tissues and substances were collected from ICRU Report 44 (1989). The present results for electronic mass stopping powers and ranges were compared with the data of PSTAR and good agreements were found between them, especially at energies between 1 - 200 MeV for stopping power and 4 - 200 MeV for the range. Also in this study, several important quantities in the field of radiation, such as thickness, linear energy transfer (LET), absorbed dose, equivalent dose, and effective dose of the protons in the given biological human body parts were calculated at protons energy 0.04 - 200 MeV.展开更多
An equivalent relationship between electro magnetic flowmeters (EMFs) and the Hall effect is discussed in principle and three equivalent conclusions about their measuring equations are derived. Thereby,the calibratio...An equivalent relationship between electro magnetic flowmeters (EMFs) and the Hall effect is discussed in principle and three equivalent conclusions about their measuring equations are derived. Thereby,the calibration using the ionic current (CUIC) is introduced to the calibration of EMFs in a special Hall effect system. A basic system with these equations is specially given and discussed for realizing the method. Two key points about CUIC are proved by a simple experiment.展开更多
We present a 3D inversion method to recover density distribution from gravity data in space domain.Our method firstly employs 3D correlation image of the vertical gradient of gravity data as a starting model to genera...We present a 3D inversion method to recover density distribution from gravity data in space domain.Our method firstly employs 3D correlation image of the vertical gradient of gravity data as a starting model to generate a higher resolution image for inversion.The 3D density distribution is then obtained by inverting the correlation image of gravity data to fit the observed data based on classical inversion method of the steepest descent method.We also perform the effective equivalent storage and subdomain techniques in the starting model calculation,the forward modeling and the inversion procedures,which allow fast computation in space domain with reducing memory consumption but maintaining accuracy.The efficiency and stability of our method is demonstrated on two sets of synthetic data and one set of the Northern Sinai Peninsula gravity data.The inverted 3D density distributions show that high density bodies beneath Risan Aniza and low density bodies exist to the southeast of Risan Aniza at depths between 1~10 and 20 km,which may be originated from hot anomalies in the lower crust.The results show that our inversion method is useful for 3D quantitative interpretation.展开更多
Thermal cracking is broadly observed in rock engineering.A finite element numerical model which considers the heterogeneity of rock materials and the damage evolution process was used to simulate the thermal cracking ...Thermal cracking is broadly observed in rock engineering.A finite element numerical model which considers the heterogeneity of rock materials and the damage evolution process was used to simulate the thermal cracking behavior of square rock samples heated from the central borehole.The thermal and mechanical behaviors of two cases,i.e.,the case with large size but low heating rate and the case with small size but high heating rate were compared to study the crack initiation location in the models with different model sizes and heating rates.The simulated stress and temperature fields,as well as the failure pattern,were in good agreement with the experimental observations.The temperature and thermal stress distribution during the heating process in both cases indicated that high tensile stress was concentrated around the thermal gradient front,which resulted in the cracks initiating at the location with a certain distance away from the borehole.The results show that under the same heating rate,crack initiation location moves outwards with the increment of the model size then remains approximately at one location,which reflects the boundary-effect.Furthermore,the results indicate that the relative crack initiation locations in two cases are nearly the same if the ratio between the heating rate in two cases(Tx/Ty)nearly equal to the square of the inverse ratio of corresponding model side lengths((ay/ax)2).This concept is named the scale-heating rate equivalence effect in this study.It is beneficial for studying thermal cracking of rock both numerically and experimentally since the model size can be significantly decreased.展开更多
In a sharp contrast to tropical cyclone(TC) genesis over the main development region of the western North Pacific(WNP), near-equatorial(0°-5°N) TCs exhibit a distinctive annual cycle, peaking in boreal winte...In a sharp contrast to tropical cyclone(TC) genesis over the main development region of the western North Pacific(WNP), near-equatorial(0°-5°N) TCs exhibit a distinctive annual cycle, peaking in boreal winter and being inactive in boreal summer. The relative roles of dynamic and thermodynamic background states on near-equatorial TCs formation were investigated based on the observational diagnosis of the genesis potential index(GPI) and high-resolution model simulations. It is found that the background vorticity makes a major contribution to the distinctive annual cycle, while mean temperature and specific humidity fields are not critical. Numerical simulations further indicate that seasonal mean cyclonic vorticity in boreal winter has three effects on TC genesis near the equator. First, the environmental cyclonic vorticity interacts with TC vortex to promote a mid-level outflow, which strengthens boundary layer friction induced ascending motion and thus condensational heating. Second, it produces an equivalent Coriolis effect(via enhanced absolute vorticity), which strengthens positive feedback between primary and secondary circulation. Third, it helps to merge small-scale vortical hot towers(VHTs) into a mesoscale core through vorticity segregation process. However, background vorticity in boreal summer has an opposite effect on TC development near the equator.展开更多
基金Project supported by the National Natural Science Funds of China(Grant Nos.61574056 and 61504156)the Natural Science Foundation of Shanghai,China(Grant No.14ZR1412000)+1 种基金Shanghai Sailing Program,China(Grant No.17YF1404700)the Science and Technology Commission of Shanghai Municipality,China(Grant No.14DZ2260800)
文摘In this paper, we present an improved high-frequency equivalent circuit for SiGe heterojunction bipolar transistors(HBTs) with a CBE layout, where we consider the distributed effects along the base region. The actual device structure is divided into three parts: a link base region under a spacer oxide, an intrinsic transistor region under the emitter window,and an extrinsic base region. Each region is considered as a two-port network, and is composed of a distributed resistance and capacitance. We solve the admittance parameters by solving the transmission-line equation. Then, we obtain the smallsignal equivalent circuit depending on the reasonable approximations. Unlike previous compact models, in our proposed model, we introduce an additional internal base node, and the intrinsic base resistance is shifted into this internal base node,which can theoretically explain the anomalous change in the intrinsic bias-dependent collector resistance in the conventional compact model.
文摘In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional(2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended averaging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell.In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellular solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.
基金supported by the program of China Polar Environment Investigation and Assessment(2011-2015)the National Nature Science Foundation of China (No. 41076132)
文摘Influencing factors, and variations and trends of Antarctic ozone hole in recent decades are analyzed, and sudden change processes of ozone at Zhongshan station and the effect of atmospheric dynamic processes on ozone changes are also discussed by using the satellite ozone data and the ground-measured ozone data at two Antarctic stations as well as the NCEP/NCAR reanalysis data. The results show that equivalent effective stratospheric chlorine (EESC) and stratospheric temperature are two important factors influencing the ozone hole. The column ozone at Zhongshan and Syowa stations is significantly related with EESC and stratospheric temperature, which means that even though the two stations are both located on the edge of the ozone hole, EESC and stratospheric temperature still played a very important role in column ozone changes, and mean while verifies that EESC is applicable on the coast of east Antarctic continent. Decadal changes in EESC are similar with those of the ozone hole, and inter-annual variations of ozone are closely related with stratospheric temperature. Based on the relation of EESC and ozone hole size, it can be projected that the ozone hole size will gradually reduce to the 1980's level from 2010 to around 2070. Of course there might exist many uncertainties in the projection, which therefore needs to be further studied.
文摘The effect of wall temperature on the characteristics of random combustion of micro organic particles with recirculation was investigated. The effect of recirculating in micro-combustors is noticeable, hence it is necessary to present a model to describe the combustion process in these technologies. Recirculation phenomenon is evaluated by entering the exhausted heat from the post flam zone into the preheat zone. In this work, for modeling of random situation at the flame front, the source term in the equation of energy was modeled considering random situation for volatizing of particles in preheat zone. The comparison of obtained results from the proposed model by experimental data regards that the random model has a better agreement with experimental data than non-random model. Also, according to the results obtained by this model, wall temperature affects the amount of heat recirculation directly and higher values of wall temperature will lead to higher amounts of burning velocity and flame temperature.
文摘In this work, the electronic mass stopping power and the range of protons in some biological human body parts (Water, Muscle, Skeletal and Bone, Cortical) were calculated in the energy range of protons 0.04 to 200 MeV using the theory of Bethe-Bloch formula as giving in the references. All these calculations were done using Matlab program. The data related to the densities, average atomic number to mass number and excitation energies for the present tissues and substances were collected from ICRU Report 44 (1989). The present results for electronic mass stopping powers and ranges were compared with the data of PSTAR and good agreements were found between them, especially at energies between 1 - 200 MeV for stopping power and 4 - 200 MeV for the range. Also in this study, several important quantities in the field of radiation, such as thickness, linear energy transfer (LET), absorbed dose, equivalent dose, and effective dose of the protons in the given biological human body parts were calculated at protons energy 0.04 - 200 MeV.
文摘An equivalent relationship between electro magnetic flowmeters (EMFs) and the Hall effect is discussed in principle and three equivalent conclusions about their measuring equations are derived. Thereby,the calibration using the ionic current (CUIC) is introduced to the calibration of EMFs in a special Hall effect system. A basic system with these equations is specially given and discussed for realizing the method. Two key points about CUIC are proved by a simple experiment.
基金the Institute of Crustal Dynamics,China Earthquake Administration(Grant No.ZDJ2019-09)the National Science Foundation of China(Grant No.41704086)the National Key Research&Development Program(2016YFC060110401).
文摘We present a 3D inversion method to recover density distribution from gravity data in space domain.Our method firstly employs 3D correlation image of the vertical gradient of gravity data as a starting model to generate a higher resolution image for inversion.The 3D density distribution is then obtained by inverting the correlation image of gravity data to fit the observed data based on classical inversion method of the steepest descent method.We also perform the effective equivalent storage and subdomain techniques in the starting model calculation,the forward modeling and the inversion procedures,which allow fast computation in space domain with reducing memory consumption but maintaining accuracy.The efficiency and stability of our method is demonstrated on two sets of synthetic data and one set of the Northern Sinai Peninsula gravity data.The inverted 3D density distributions show that high density bodies beneath Risan Aniza and low density bodies exist to the southeast of Risan Aniza at depths between 1~10 and 20 km,which may be originated from hot anomalies in the lower crust.The results show that our inversion method is useful for 3D quantitative interpretation.
基金supported by the National Natural Science Foundation of China(Grant No.51874065)the National Major Scientific Instruments Development Project(Grant No.51627804).
文摘Thermal cracking is broadly observed in rock engineering.A finite element numerical model which considers the heterogeneity of rock materials and the damage evolution process was used to simulate the thermal cracking behavior of square rock samples heated from the central borehole.The thermal and mechanical behaviors of two cases,i.e.,the case with large size but low heating rate and the case with small size but high heating rate were compared to study the crack initiation location in the models with different model sizes and heating rates.The simulated stress and temperature fields,as well as the failure pattern,were in good agreement with the experimental observations.The temperature and thermal stress distribution during the heating process in both cases indicated that high tensile stress was concentrated around the thermal gradient front,which resulted in the cracks initiating at the location with a certain distance away from the borehole.The results show that under the same heating rate,crack initiation location moves outwards with the increment of the model size then remains approximately at one location,which reflects the boundary-effect.Furthermore,the results indicate that the relative crack initiation locations in two cases are nearly the same if the ratio between the heating rate in two cases(Tx/Ty)nearly equal to the square of the inverse ratio of corresponding model side lengths((ay/ax)2).This concept is named the scale-heating rate equivalence effect in this study.It is beneficial for studying thermal cracking of rock both numerically and experimentally since the model size can be significantly decreased.
基金Supported by the National Natural Science Foundation of China(41630423 and 41875069)NOAA of U.S.(NA18OAR4310298)+2 种基金National Science Foundation of U.S.(AGS-1643297)China Scholarship Council(CSC,N201808320286)Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18_1002)。
文摘In a sharp contrast to tropical cyclone(TC) genesis over the main development region of the western North Pacific(WNP), near-equatorial(0°-5°N) TCs exhibit a distinctive annual cycle, peaking in boreal winter and being inactive in boreal summer. The relative roles of dynamic and thermodynamic background states on near-equatorial TCs formation were investigated based on the observational diagnosis of the genesis potential index(GPI) and high-resolution model simulations. It is found that the background vorticity makes a major contribution to the distinctive annual cycle, while mean temperature and specific humidity fields are not critical. Numerical simulations further indicate that seasonal mean cyclonic vorticity in boreal winter has three effects on TC genesis near the equator. First, the environmental cyclonic vorticity interacts with TC vortex to promote a mid-level outflow, which strengthens boundary layer friction induced ascending motion and thus condensational heating. Second, it produces an equivalent Coriolis effect(via enhanced absolute vorticity), which strengthens positive feedback between primary and secondary circulation. Third, it helps to merge small-scale vortical hot towers(VHTs) into a mesoscale core through vorticity segregation process. However, background vorticity in boreal summer has an opposite effect on TC development near the equator.