期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Numerical simulation of soldered joints and reliability analysis of PLCC components with J-shape leads 被引量:13
1
作者 张亮 薛松柏 +2 位作者 卢方焱 韩宗杰 王俭辛 《China Welding》 EI CAS 2008年第2期37-41,共5页
This paper deals with a study on SnPb and lead-free soldered joint reliability of PLCC devices with different lead counts under three kinds of temperature cycle profiles, which is based on non-linear finite element me... This paper deals with a study on SnPb and lead-free soldered joint reliability of PLCC devices with different lead counts under three kinds of temperature cycle profiles, which is based on non-linear finite element method. By analyzing the stress of soldered joints, it is found that the largest stress is at the area between the soldered joints and the leads, and analysis results indicate that the yon Mises stress at the location slightly increases with the increase of lead counts. For PLCC with 84 leads the soldered joints was modeled for three typical loading (273 -398 K, 218 -398 K and 198 -398 K) in order to study the influence of acceleration factors on the reliability of soldered joints. And the estimation of equivalent plastic strain of three different lead-free solder alloys ( Sn3.8AG0. 7Cu, Sn3.5Ag and Sn37Pb ) was also carried out. 展开更多
关键词 finite element method reliability lead counts equivalent plastic strain
下载PDF
Three dimensional finite element study on torsion extrusion processing of 1050 aluminum alloy 被引量:1
2
作者 Ali KHOSRAVIFARD Mohammad JAHEDI Amir Hossein YAGHTIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2771-2776,共6页
The capability of the torsion extrusion (TE) process as a severe plastic deformation (SPD) method was compared with the conventional forward extrusion (FE) process. The TE and FE processes were successfully perf... The capability of the torsion extrusion (TE) process as a severe plastic deformation (SPD) method was compared with the conventional forward extrusion (FE) process. The TE and FE processes were successfully performed on AA1050 alloy samples at room temperature. To simulate the above mentioned processes, finite element analysis was carried out using the commercial elasto-plastic finite element analysis ABAQUS/Explicit Simulation. It is shown that load requirement for the TE process is lower than that for the FE process. The equivalent plastic strain calculated by the FEA proved that higher values of strain are imposed to the sample in the TE process. The strain distribution for the TE sample at the final stage of extrusion shows smoother strain gradient in comparison with the one produced by the FE process. 展开更多
关键词 AA-1050 alloy severe plastic deformation (SPD) torsion extrusion (TE) equivalent plastic strain strain distribution deformation energy
下载PDF
Analysis of crack initiation location and its influencing factors of fretting fatigue in aluminum alloy components 被引量:1
3
作者 Jian WANG Caizhi ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第6期420-436,共17页
To promote the development of fretting fatigue assessment and control technology for aircraft components,this paper uses the Crystal Plasticity Finite Element(CPFE)method and sub-modeling technology to study the Crack... To promote the development of fretting fatigue assessment and control technology for aircraft components,this paper uses the Crystal Plasticity Finite Element(CPFE)method and sub-modeling technology to study the Crack Initiation Location(CIL)of fretting fatigue in Aluminum Alloy(AA)specimens.The effects of external excitations such as normal load,tangential load,and axial stress on the CIL are investigated.It is found that the Most Likely Cracked(MLC)site revealed in a specimen and the CIL may always be consistent after a limited number of cyclic loadings,and they are both located at the hotspot on the contact surface or in the subsurface.The MLC site may also migrate from the hotspot on the contact surface to the hotspot in the subsurface with an increase of the cyclic number,and finally transform into a CIL.The relationship between the MLC site and the CIL of fretting fatigue and its influencing factors have also been described,as well as the identification method of the CIL of fretting fatigue,which provide theoretical and technical supports for anti-fretting fatigue design of AA components in service. 展开更多
关键词 Crack nucleation Crystal plasticity equivalent plastic strain Fretting fatigue HOTSPOT
原文传递
Experimental and numerical investigations of the compressive behavior of carbon fiber-reinforced polymer-strengthened tubular steel T-joints
4
作者 Peng DENG Boyi YANG +1 位作者 Xiulong CHEN Yan LIU 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第5期1215-1231,共17页
A method for strengthening damaged tubular steel T-joints under axial compression by wrapping them with carbon fiber-reinforced polymer(CFRP)sheets was proposed and evaluated.The influence of the CFRP strengthening on... A method for strengthening damaged tubular steel T-joints under axial compression by wrapping them with carbon fiber-reinforced polymer(CFRP)sheets was proposed and evaluated.The influence of the CFRP strengthening on the failure mode and load capacity of T-joints with different degrees of damage was investigated using experiments and finite element analyses.Five T-joints were physically tested:one bare joint to obtain the peak load and corresponding displacement(D1m),two reinforced joints to provide a reference,and two pre-damaged then retrofitted joints to serve as the primary research objects.The ratio of the pre-loaded specimen chord displacement to the value of D1m was considered to be the degree of damage of the two retrofitted joints,and was set to 0.80 and 1.20.The results demonstrate that the maximum capacity of the retrofitted specimen was increased by 0.83%–15.06%over the corresponding unreinforced specimens.However,the capacity of the retrofitted specimen was 2.51%–22.77%lesser compared with that of the directly reinforced specimens.Next,111 numerical analysis models(0.63≤b≤0.76,9.70≤g≤16.92)were established to parametrically evaluate the effects of different geometric and strengthening parameters on the load capacity of strengthened tubular T-joints under different degrees of damage.The numerical analysis results revealed that the development of equivalent plastic strain at the selected measuring points was moderated by strengthening with CFRP wrapping,and indicated the optimal CFRP strengthening thickness and wrapping orientation according to tubular T-joint parameters.Finally,reasonable equations for calculating the load capacity of CFRP-strengthened joints were proposed and demonstrated to provide accurate results.The findings of this study can be used to inform improved CFRP strengthening of damaged tubular steel structures. 展开更多
关键词 tubular T-joint carbon fiber-reinforced polymer degree of damage numerical analysis equivalent plastic strain
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部