In supersonic flowing plasmas,the auto-resonant behavior of ion acoustic waves driven by stimulated Brillouin backscattering is self-consistently investigated.A nature of absolute instability appears in the evolution ...In supersonic flowing plasmas,the auto-resonant behavior of ion acoustic waves driven by stimulated Brillouin backscattering is self-consistently investigated.A nature of absolute instability appears in the evolution of the stimulated Brillouin backscattering.By adopting certain form of incident lights combined by two perpendicular linear polarization lasers or polarization rotation lasers,the absolute instability is suppressed significantly.The suppression of auto-resonant stimulated Brillouin scattering is verified with the fully kinetic Vlasov code.展开更多
The effects of the nonlinear polarization in a partially stripped plasma on stimulated Brillouin scattering (SBS) process of a strong laser are discussed. A set of nonlineax mode coupling equations and the linear grow...The effects of the nonlinear polarization in a partially stripped plasma on stimulated Brillouin scattering (SBS) process of a strong laser are discussed. A set of nonlineax mode coupling equations and the linear growth rate of SBS instability is derived, respectively. When the intensity of an incident laser Io > 10^(17) W/cm^2, the third order susceptibility X(3) will reduce the above mentioned linear growth rate enormously. If taking the maximum value of the second order susceptibility X(2), the growth rate may be decreased observably when Io > 10_^(14)W/cm2. Furthermore, the nonlinear susceptibility can affect the nonlinear evolution of SBS much extensively.展开更多
A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allow...A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.展开更多
The spectral purity of fiber lasers has become a critical issue in both optical sensing and communication fields.As a result of ultra-narrow intrinsic linewidth, stimulated thermal Rayleigh scattering(STRS) has presen...The spectral purity of fiber lasers has become a critical issue in both optical sensing and communication fields.As a result of ultra-narrow intrinsic linewidth, stimulated thermal Rayleigh scattering(STRS) has presented special potential to compress the linewidth of fiber lasers. To suppress stimulated Brillouin scattering(SBS), the most dominant disturbance for STRS in optical fibers, a semi-quantitative estimation has been established to illuminate the mechanism of suppressing SBS in a periodic tapered fiber, and it agrees with experimental results. Finally, a linewidth compression device based on STRS is integrated into a single-longitudinal-mode ring-cavity fiber laser with secondary cavities, and its linewidth is verified to be 200 Hz through a self-heterodyne detecting and Voigt fitting method.展开更多
A continuous-wave(CW)single-longitudinal-mode(SLM)Raman laser at 1240 nm with power of up to 20.6 W was demonstrated in a free-running diamond Raman oscillator without any axial-mode selection elements.The SLM operati...A continuous-wave(CW)single-longitudinal-mode(SLM)Raman laser at 1240 nm with power of up to 20.6 W was demonstrated in a free-running diamond Raman oscillator without any axial-mode selection elements.The SLM operation was achieved due to the spatial-hole-burning free nature of Raman gain and was maintained at the highest available pump power by suppressing the parasitic stimulated Brillouin scattering(SBS).A folded-cavity design was employed for reducing the perturbing effect of resonances at the pump frequency.At a pump power of 69 W,the maximum Stokes output reached 20.6 W,corresponding to a 30%optical-to-optical conversion efficiency from 1064to 1240 nm.The result shows that parasitic SBS is the main physical process disturbing the SLM operation of Raman oscillator at higher power.In addition,for the first time,the spectral linewidth of a CW SLM diamond Raman laser was resolved using the long-delayed self-heterodyne interferometric method,which is 105 kHz at 20 W.展开更多
Laser pulses of 200 ps with extremely high intensities and high energies are sufficient to satisfy the demand of shock ignition,which is an alternative path to ignition in inertial confinement fusion(ICF).This paper r...Laser pulses of 200 ps with extremely high intensities and high energies are sufficient to satisfy the demand of shock ignition,which is an alternative path to ignition in inertial confinement fusion(ICF).This paper reports a type of Brillouin scheme to obtain high-intensity 200-ps laser pulses,where the pulse durations are a challenge for conventional pulsed laser amplification systems.In the amplification process,excited Brillouin acoustic waves fulfill the nonlinear optical effect through which the high energy of a long pump pulse is entirely transferred to a 200-ps laser pulse.This method was introduced and achieved within the SG-Ⅲprototype system in China.Compared favorably with the intensity of 2 GW/cm^2 in existing ICF laser drivers,a 6.96-GW/cm^2 pulse with a width of 170 ps was obtained in our experiment.The practical scalability of the results to larger ICF laser drivers is discussed.展开更多
We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a reg...We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a regeneration portion consisting of an erbium-doped fiber and a single-mode fiber enables the generation of broadband BFC.The dynamics of broadband BFC generation changing with the pump power(EDF and Raman)and Brillouin pump(BP)wavelength are investigated in detail,respectively.Under suitable conditions,the bidirectional BRRFL proposed can produce a flatamplitude BFC with 40.7-nm bandwidth ranging from 1531 nm to 1571.7 nm,and built-in 242-order Brillouin Stokes lines(BSLs)with double Brillouin-frequency-shift spacing.Moreover,the linewidth of single BSL is experimentally measured to be about 2.5 kHz.The broadband bidirectional narrow-linewidth BRRFL has great potential applications in optical communication,optical sensing,spectral measurement,and so on.展开更多
The optical rogue wave(RW),known as a short-lived extraordinarily high amplitude dynamics phenomenon with small appearing probabilities,plays an important role in revealing and understanding the fundamental physics of...The optical rogue wave(RW),known as a short-lived extraordinarily high amplitude dynamics phenomenon with small appearing probabilities,plays an important role in revealing and understanding the fundamental physics of nonlinear wave propagations in optical systems.The random fiber laser(RFL),featured with cavity-free and“modeless”structure,has opened up new avenues for fundamental physics research and potential practical applications combining nonlinear optics and laser physics.Here,the extreme event of optical RW induced by noise-driven modulation instability that interacts with the cascaded stimulated Brillouin scattering,the quasi-phase-matched four-wave mixing as well as the random mode resonance process is observed in a Brillouin random fiber laser comb(BRFLC).Temporal and statistical characteristics of the RWs concerning their emergence and evolution are experimentally explored and analyzed.Specifically,temporally localized structures with high intensities including chair-like pulses with a sharp leading edge followed by a trailing plateau appear frequently in the BRFLC output,which can evolve to chair-like RW pulses with adjustable pulse duration and amplitude under controlled conditions.This investigation provides a deep insight into the extreme event of RWs and paves the way for RW manipulation for its generation and elimination in RFLs through adapted laser configuration.展开更多
Thermal effects are typically considered as obstacles to high-repetition-rate stimulated Brillouin scattering(SBS)pulse compression.In this paper,a novel method is proposed for improving the SBS output characteristics...Thermal effects are typically considered as obstacles to high-repetition-rate stimulated Brillouin scattering(SBS)pulse compression.In this paper,a novel method is proposed for improving the SBS output characteristics by exploiting thermal effects on the liquid medium.Using HT270,the SBS output parameters with the medium purification and rotating off-centered lens methods are studied at different repetition rates.The results indicate that these two methods can alleviate thermal effects and improve the energy efficiency,but the rotating method reduces the energy stability because of the aggravated optical breakdown at the kilohertz-level repetition rate.For a 35-mJ pump energy,the energy efficiency at 2 kHz without the rotating method is 30%higher than that at 100 Hz and 70%higher than that at 500 Hz.The enhancement of the SBS output characteristics by thermal effects is demonstrated theoretically and experimentally,and 2-kHz high-power SBS pulsecompression is achieved with HT270.展开更多
A photonic crystal fibre Brillouin laser based on fibre Bragg grating Fabr-Perot cavity is presented. A highly nonlinear photonic crystal fibre 25 m in length is used as Brillouin gain medium and fibre Bragg grating F...A photonic crystal fibre Brillouin laser based on fibre Bragg grating Fabr-Perot cavity is presented. A highly nonlinear photonic crystal fibre 25 m in length is used as Brillouin gain medium and fibre Bragg grating Fabry-Perot cavity is chosen in order to enhance the laser conversion efficiency and suppress the higher-order Stokes waves. The laser reaches the threshold at input power of 35 mW, and the experimental laser conversion efficiency achieves 18% of the input power of 140 mW and does not show higher-order Stokes waves. A photonic crystal fibre Brillouin laser with shorter fibre length and lower threshold is experimentally realized.展开更多
This paper demonstrates a room-temperature multiwavelength fibre laser with spacing-adjustability and wavelength-tunability. The nonlinear gain of self-excited stimulated Brillouin scattering can suppress mode competi...This paper demonstrates a room-temperature multiwavelength fibre laser with spacing-adjustability and wavelength-tunability. The nonlinear gain of self-excited stimulated Brillouin scattering can suppress mode competition induced by homogeneous broadening of Erbium-doped fibre. With the use of a birefringence fibre loop filter, the wavelength spacing can be adjusted by changing the length of the used birefringence fibre, and the lasing wavelengths can be finely tuned through modifying the filtering profile of the birefringence filter. Multiwavelength output with spectral spacing as small as 0.076 nm and a wavelength number of more than 80 has been successfully produced.展开更多
We demonstrate multiwavelength Brillouin fiber lasers(MWBFLs)with double-frequency spacing based on a small-core fiber(SCF)and a standard single-mode fiber(SMF),which have core diameters of 5 and 8.8μm,respectively.E...We demonstrate multiwavelength Brillouin fiber lasers(MWBFLs)with double-frequency spacing based on a small-core fiber(SCF)and a standard single-mode fiber(SMF),which have core diameters of 5 and 8.8μm,respectively.Experimental results show that the SCF-based MWBFL exhibits a higher laser output power and a lower pump threshold.The output powers of the SCF-based MWBFL are>1.4 times those of the SMF-based MWBFL.Moreover,the threshold power required to generate each channel of the SCF-based MWBFL is 59%that of the SMF-based MWBFL.When the same pump power of 180 mW is injected,the number of laser channels generated for the SCF-based MWBFL is 13,which is twice that generated for the SMF-based MWBFL.In addition,the SCF-based MWBFL exhibits good wavelength tunability from 1535 to 1565 nm and temporal stability over an hour.展开更多
Two sets of laser-damage experiments on large-aperture fused silica optics have been carried out in a high-power laser facility. Severe damage has been found on the grating which presented dense craters on the front s...Two sets of laser-damage experiments on large-aperture fused silica optics have been carried out in a high-power laser facility. Severe damage has been found on the grating which presented dense craters on the front surface. This phenomenon is quite different from other fused silica optics, which are damaged on the rear surface. The damage possibility due to the redeposition layer was ruled out by acid-etching the grating's front surface. The remarkable stimulated Brillouin scattering (SBS) effect was observed in grating and the reason for the front surface damage is thought to be the backward SBS.展开更多
The dependence of Brillouin gain spectrum(BGS)characteristics,including the Brillouin frequency shift(BFS)and the BGS bandwidth,on germanium concentration in large-mode-area Ge-doped passive fibers is investigated the...The dependence of Brillouin gain spectrum(BGS)characteristics,including the Brillouin frequency shift(BFS)and the BGS bandwidth,on germanium concentration in large-mode-area Ge-doped passive fibers is investigated theoretically and experimentally.The simulation results show that the BFS is inversely proportional to GeO_(2)concentration,and the BGS bandwidth initially increases with the augment of GeO_(2)concentration,and then decreases.The BGSs of four fibers with core diameters of 10μm and 20μm for different GeO_(2)concentrations are compared experimentally.Experimental results demonstrate that with the same core diameter,the variations of BFS and BGS bandwidths with GeO_(2)concentration accord with the simulation results.Additionally,the BGS characteristics of three large-mode-area passive fibers with diameters of 10μm,25μm,and 30μm are measured,which confirm that the increasing of the fiber diameters will cause the BGS bandwidth to broaden.We believe that these results can provide valuable references for modulating the high-power narrowlinewidth fiber lasers and Brillouin fiber amplifiers.展开更多
In this paper, we report a high power long-pulse single-frequency all-fiber amplifier at 1064 nm with near-diffraction-limited beam quality based on a polarization-maintaining tapered Yb-doped fiber (T-YDF). By applyi...In this paper, we report a high power long-pulse single-frequency all-fiber amplifier at 1064 nm with near-diffraction-limited beam quality based on a polarization-maintaining tapered Yb-doped fiber (T-YDF). By applying square wave pulse modulation to the diodes, with a frequency of 50 Hz and a pulse width of 668 μs, the peak power of the output laser reached 257 W with an average power of 8.65 W, linewidth of 10.6 kHz and M<sup>2</sup> < 1.5. .展开更多
This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously.The results show...This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously.The results show that the Stokes linewidth behavior in a free-space-running Brillouin laser cavity is determined by the phase diffusion of the pump and the technical noise of the system.Experimentally,a Stokes light output with a power of 22.5 W and a linewidth of 3.2 kHz was obtained at a coupling mirror reflectivity of 96%,which is nearly 2.5 times compressed compared with the linewidth of the pump(7.36 kHz).In addition,the theorical analysis shows that at a pump power of 60Wand a coupling mirror reflectivity of 96%,a Stokes output with a linewidth of 1.6 kHz and up to 80%optical conversion efficiency can be achieved by reducing the insertion loss of the intracavity.This study provides a promising technical route to achieve high-power ultra-narrow linewidth special wavelength laser radiations.展开更多
We demonstrate comprehensive investigation of the injection locking dynamics of a backscattered Brillouin laser in silica whispering-gallery-mode microcavity. Via injection locking, the Brillouin laser acquires highly...We demonstrate comprehensive investigation of the injection locking dynamics of a backscattered Brillouin laser in silica whispering-gallery-mode microcavity. Via injection locking, the Brillouin laser acquires highly correlated phase with the seed laser, enabling ultra-narrow bandwidth, high gain, and coherent optical amplification. Also, for the first time,to the best of our knowledge, the injection locked Brillouin laser is utilized to implement all-optical carrier recovery from coherent optical data signals. We show that by using the injection locked Brillouin laser as a local oscillator for self-homodyne detection, high-quality data receiving can be realized, even without traditional electrical compensations for carrier frequency and phase drifts.展开更多
The power scaling on mid-infrared Raman fibre lasers(RFLs) is in demand for applications in health, environment and security. In this paper, we present the simulated laser behaviours of the tellurite glass RFLs pumped...The power scaling on mid-infrared Raman fibre lasers(RFLs) is in demand for applications in health, environment and security. In this paper, we present the simulated laser behaviours of the tellurite glass RFLs pumped by 300-W Tm-doped fibre lasers(TDFLs) at 2 μm for the first time. By combining the advantages of the TDFLs and tellurite fibre, the output power at 2.35 μm has reached over hundreds of watts by first-order Raman shift. Moreover, the cascaded RFLs have been demonstrated with a wavelength extension greater than 3 μm and output power of tens of watts. To maximize the output power and the slope efficiency of the RFLs, we further analyse the interaction between the Raman gain and cavity loss, which are determined by fibre length and output reflectance of the laser cavity.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11875091 and 11975059)the Science Challenge Project,China(Grant No.TZ2016005).
文摘In supersonic flowing plasmas,the auto-resonant behavior of ion acoustic waves driven by stimulated Brillouin backscattering is self-consistently investigated.A nature of absolute instability appears in the evolution of the stimulated Brillouin backscattering.By adopting certain form of incident lights combined by two perpendicular linear polarization lasers or polarization rotation lasers,the absolute instability is suppressed significantly.The suppression of auto-resonant stimulated Brillouin scattering is verified with the fully kinetic Vlasov code.
文摘The effects of the nonlinear polarization in a partially stripped plasma on stimulated Brillouin scattering (SBS) process of a strong laser are discussed. A set of nonlineax mode coupling equations and the linear growth rate of SBS instability is derived, respectively. When the intensity of an incident laser Io > 10^(17) W/cm^2, the third order susceptibility X(3) will reduce the above mentioned linear growth rate enormously. If taking the maximum value of the second order susceptibility X(2), the growth rate may be decreased observably when Io > 10_^(14)W/cm2. Furthermore, the nonlinear susceptibility can affect the nonlinear evolution of SBS much extensively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11975059 and 12005021)。
文摘A novel scheme to suppress both stimulated Brillouin scattering(SBS) and stimulated Raman scattering(SRS) by combining an alternating frequency(AF) laser and a transverse magnetic field is proposed. The AF laser allows the laser frequency to change discretely and alternately over time. The suppression of SBS is significant as long as the AF difference is greater than the linear growth rate of SBS or the alternating time of the laser frequency is shorter than the linear growth time of SBS. However, the AF laser proves ineffective in suppressing SRS, which usually has a much higher linear growth rate than SBS. To remedy that, a transverse magnetic field is included to suppress the SRS instability. The electrons trapped in the electron plasma waves(EPWs) of SRS can be accelerated by the surfatron mechanism in a transverse magnetic field and eventually detrapped. While continuously extracting energy from EPWs, the EPWs are dissipated and the kinetic inflation of SRS is suppressed. The one-dimensional particle-in-cell simulation results show that both SBS and SRS can be effectively suppressed by combining the AF laser with a transverse magnetic field with tens of Tesla. The total reflectivity can be dramatically reduced by more than one order of magnitude. These results provide a potential reference for controlling SBS and SRS under the related parameters of inertial confinement fusion.
基金National Natural Science Foundation of China(NSFC)(51575140,61377084)Science Fund for Distinguished Young Scholars of Harbin(RC2016JQ006007)
文摘The spectral purity of fiber lasers has become a critical issue in both optical sensing and communication fields.As a result of ultra-narrow intrinsic linewidth, stimulated thermal Rayleigh scattering(STRS) has presented special potential to compress the linewidth of fiber lasers. To suppress stimulated Brillouin scattering(SBS), the most dominant disturbance for STRS in optical fibers, a semi-quantitative estimation has been established to illuminate the mechanism of suppressing SBS in a periodic tapered fiber, and it agrees with experimental results. Finally, a linewidth compression device based on STRS is integrated into a single-longitudinal-mode ring-cavity fiber laser with secondary cavities, and its linewidth is verified to be 200 Hz through a self-heterodyne detecting and Voigt fitting method.
基金supported by the National Natural Science Foundation of China(No.62005073)the Program of the State Key Laboratory of Crystal Materials(No.KF2101)+3 种基金the National Key Research and Development Program of China(No.2020YFC2200300)the Program of the State Key Laboratory of Quantum Optics and Quantum Optics Devices(No.KF202207)the Research Funds of Hangzhou Institute for Advanced Study(No.2022ZZ01006)the Hangzhou Agricultural and Social Development initiative Design Project(No.2022ZDSJ0846).
文摘A continuous-wave(CW)single-longitudinal-mode(SLM)Raman laser at 1240 nm with power of up to 20.6 W was demonstrated in a free-running diamond Raman oscillator without any axial-mode selection elements.The SLM operation was achieved due to the spatial-hole-burning free nature of Raman gain and was maintained at the highest available pump power by suppressing the parasitic stimulated Brillouin scattering(SBS).A folded-cavity design was employed for reducing the perturbing effect of resonances at the pump frequency.At a pump power of 69 W,the maximum Stokes output reached 20.6 W,corresponding to a 30%optical-to-optical conversion efficiency from 1064to 1240 nm.The result shows that parasitic SBS is the main physical process disturbing the SLM operation of Raman oscillator at higher power.In addition,for the first time,the spectral linewidth of a CW SLM diamond Raman laser was resolved using the long-delayed self-heterodyne interferometric method,which is 105 kHz at 20 W.
基金supported in part by the National Natural Science Foundation of China (NSFC) (No. 61622501)the China Postdoctoral Science Foundation (No. BX20180085)
文摘Laser pulses of 200 ps with extremely high intensities and high energies are sufficient to satisfy the demand of shock ignition,which is an alternative path to ignition in inertial confinement fusion(ICF).This paper reports a type of Brillouin scheme to obtain high-intensity 200-ps laser pulses,where the pulse durations are a challenge for conventional pulsed laser amplification systems.In the amplification process,excited Brillouin acoustic waves fulfill the nonlinear optical effect through which the high energy of a long pump pulse is entirely transferred to a 200-ps laser pulse.This method was introduced and achieved within the SG-Ⅲprototype system in China.Compared favorably with the intensity of 2 GW/cm^2 in existing ICF laser drivers,a 6.96-GW/cm^2 pulse with a width of 170 ps was obtained in our experiment.The practical scalability of the results to larger ICF laser drivers is discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62175116 and 91950105)the 1311 Talent Plan of Nanjing University of Posts and Telecommunications, Chinathe Postgraduate Research & Practice Innovation Program, Jiangsu Province, China (Grant No. SJCX21_0276)
文摘We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a regeneration portion consisting of an erbium-doped fiber and a single-mode fiber enables the generation of broadband BFC.The dynamics of broadband BFC generation changing with the pump power(EDF and Raman)and Brillouin pump(BP)wavelength are investigated in detail,respectively.Under suitable conditions,the bidirectional BRRFL proposed can produce a flatamplitude BFC with 40.7-nm bandwidth ranging from 1531 nm to 1571.7 nm,and built-in 242-order Brillouin Stokes lines(BSLs)with double Brillouin-frequency-shift spacing.Moreover,the linewidth of single BSL is experimentally measured to be about 2.5 kHz.The broadband bidirectional narrow-linewidth BRRFL has great potential applications in optical communication,optical sensing,spectral measurement,and so on.
基金supported by the National Natural Science Foundation of China (Grant No.62105180)the Natural Science Foundation of Shandong Province (Grant Nos.ZR2020MF110 and ZR2020MF118)+2 种基金the Taishan Scholar Foundation of Shandong Province (Grant No.tsqn202211027)the Qilu Young Scholar Program of Shandong Universitythe National Grant Program for High-level Returning Oversea Talents (2023).
文摘The optical rogue wave(RW),known as a short-lived extraordinarily high amplitude dynamics phenomenon with small appearing probabilities,plays an important role in revealing and understanding the fundamental physics of nonlinear wave propagations in optical systems.The random fiber laser(RFL),featured with cavity-free and“modeless”structure,has opened up new avenues for fundamental physics research and potential practical applications combining nonlinear optics and laser physics.Here,the extreme event of optical RW induced by noise-driven modulation instability that interacts with the cascaded stimulated Brillouin scattering,the quasi-phase-matched four-wave mixing as well as the random mode resonance process is observed in a Brillouin random fiber laser comb(BRFLC).Temporal and statistical characteristics of the RWs concerning their emergence and evolution are experimentally explored and analyzed.Specifically,temporally localized structures with high intensities including chair-like pulses with a sharp leading edge followed by a trailing plateau appear frequently in the BRFLC output,which can evolve to chair-like RW pulses with adjustable pulse duration and amplitude under controlled conditions.This investigation provides a deep insight into the extreme event of RWs and paves the way for RW manipulation for its generation and elimination in RFLs through adapted laser configuration.
基金the National Natural Science Foundation of China(No.62105303)the Shanxi Scholarship Council of China(No.2020-102)+2 种基金the Fundamental Research Program of Shanxi Province(No.20210302124026)the Scientific and Technological Innovation Programs in Shanxi(No.2020L0265)the 2021 China-Korea Young Scientist Exchange Program.
文摘Thermal effects are typically considered as obstacles to high-repetition-rate stimulated Brillouin scattering(SBS)pulse compression.In this paper,a novel method is proposed for improving the SBS output characteristics by exploiting thermal effects on the liquid medium.Using HT270,the SBS output parameters with the medium purification and rotating off-centered lens methods are studied at different repetition rates.The results indicate that these two methods can alleviate thermal effects and improve the energy efficiency,but the rotating method reduces the energy stability because of the aggravated optical breakdown at the kilohertz-level repetition rate.For a 35-mJ pump energy,the energy efficiency at 2 kHz without the rotating method is 30%higher than that at 100 Hz and 70%higher than that at 500 Hz.The enhancement of the SBS output characteristics by thermal effects is demonstrated theoretically and experimentally,and 2-kHz high-power SBS pulsecompression is achieved with HT270.
基金Project supported by the National Natural Science Foundation of China(Grant Nos60577028,60407011 and 60177025)the Research Fund for the Doctoral Program of Higher Education,China
文摘A photonic crystal fibre Brillouin laser based on fibre Bragg grating Fabr-Perot cavity is presented. A highly nonlinear photonic crystal fibre 25 m in length is used as Brillouin gain medium and fibre Bragg grating Fabry-Perot cavity is chosen in order to enhance the laser conversion efficiency and suppress the higher-order Stokes waves. The laser reaches the threshold at input power of 35 mW, and the experimental laser conversion efficiency achieves 18% of the input power of 140 mW and does not show higher-order Stokes waves. A photonic crystal fibre Brillouin laser with shorter fibre length and lower threshold is experimentally realized.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60702006, 60736002, 60807014, 60837004 and 60967002)China Postdoctoral Science Foundation, Open Fund of Key Laboratory of Information Photonics and Optical CommunicationsNatural Science Foundation of Jiangxi Province (Grant No. 2008GQS0050)
文摘This paper demonstrates a room-temperature multiwavelength fibre laser with spacing-adjustability and wavelength-tunability. The nonlinear gain of self-excited stimulated Brillouin scattering can suppress mode competition induced by homogeneous broadening of Erbium-doped fibre. With the use of a birefringence fibre loop filter, the wavelength spacing can be adjusted by changing the length of the used birefringence fibre, and the lasing wavelengths can be finely tuned through modifying the filtering profile of the birefringence filter. Multiwavelength output with spectral spacing as small as 0.076 nm and a wavelength number of more than 80 has been successfully produced.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61875094)China Postdoctoral Science Foundation (Grant No. 2018M642386)K. C. Wong Magna Fund in Ningbo University
文摘We demonstrate multiwavelength Brillouin fiber lasers(MWBFLs)with double-frequency spacing based on a small-core fiber(SCF)and a standard single-mode fiber(SMF),which have core diameters of 5 and 8.8μm,respectively.Experimental results show that the SCF-based MWBFL exhibits a higher laser output power and a lower pump threshold.The output powers of the SCF-based MWBFL are>1.4 times those of the SMF-based MWBFL.Moreover,the threshold power required to generate each channel of the SCF-based MWBFL is 59%that of the SMF-based MWBFL.When the same pump power of 180 mW is injected,the number of laser channels generated for the SCF-based MWBFL is 13,which is twice that generated for the SMF-based MWBFL.In addition,the SCF-based MWBFL exhibits good wavelength tunability from 1535 to 1565 nm and temporal stability over an hour.
文摘Two sets of laser-damage experiments on large-aperture fused silica optics have been carried out in a high-power laser facility. Severe damage has been found on the grating which presented dense craters on the front surface. This phenomenon is quite different from other fused silica optics, which are damaged on the rear surface. The damage possibility due to the redeposition layer was ruled out by acid-etching the grating's front surface. The remarkable stimulated Brillouin scattering (SBS) effect was observed in grating and the reason for the front surface damage is thought to be the backward SBS.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2018B090904001)the National Natural Science Foundation of China(Grant Nos.61805261,61405202,and 61705243)the Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2020252)。
文摘The dependence of Brillouin gain spectrum(BGS)characteristics,including the Brillouin frequency shift(BFS)and the BGS bandwidth,on germanium concentration in large-mode-area Ge-doped passive fibers is investigated theoretically and experimentally.The simulation results show that the BFS is inversely proportional to GeO_(2)concentration,and the BGS bandwidth initially increases with the augment of GeO_(2)concentration,and then decreases.The BGSs of four fibers with core diameters of 10μm and 20μm for different GeO_(2)concentrations are compared experimentally.Experimental results demonstrate that with the same core diameter,the variations of BFS and BGS bandwidths with GeO_(2)concentration accord with the simulation results.Additionally,the BGS characteristics of three large-mode-area passive fibers with diameters of 10μm,25μm,and 30μm are measured,which confirm that the increasing of the fiber diameters will cause the BGS bandwidth to broaden.We believe that these results can provide valuable references for modulating the high-power narrowlinewidth fiber lasers and Brillouin fiber amplifiers.
文摘In this paper, we report a high power long-pulse single-frequency all-fiber amplifier at 1064 nm with near-diffraction-limited beam quality based on a polarization-maintaining tapered Yb-doped fiber (T-YDF). By applying square wave pulse modulation to the diodes, with a frequency of 50 Hz and a pulse width of 668 μs, the peak power of the output laser reached 257 W with an average power of 8.65 W, linewidth of 10.6 kHz and M<sup>2</sup> < 1.5. .
基金the National Natural Science Foundation of China(No.61927815)the Natural Science Foundation of Tianjin City(Nos.22JCYBJC01100 and 20JCZDJC00430)+4 种基金the Shijiazhuang Overseas Talents Introduction Project(No.20230004)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices(No.KF202201)Funds for Basic Scientific Research of Hebei University of Technology(No.JBKYTD2201)D.J.acknowledges the support from the Postgraduate Innovation Ability Training Program of Hebei Province(No.CXZZBS2021030)R.P.M.acknowledges the support from the Asian Office of Aerospace Research and Development(AOARD).
文摘This study analyzes the linewidth narrowing characteristics of free-space-running Brillouin lasers and investigates the approaches to achieve linewidth compression and power enhancement simultaneously.The results show that the Stokes linewidth behavior in a free-space-running Brillouin laser cavity is determined by the phase diffusion of the pump and the technical noise of the system.Experimentally,a Stokes light output with a power of 22.5 W and a linewidth of 3.2 kHz was obtained at a coupling mirror reflectivity of 96%,which is nearly 2.5 times compressed compared with the linewidth of the pump(7.36 kHz).In addition,the theorical analysis shows that at a pump power of 60Wand a coupling mirror reflectivity of 96%,a Stokes output with a linewidth of 1.6 kHz and up to 80%optical conversion efficiency can be achieved by reducing the insertion loss of the intracavity.This study provides a promising technical route to achieve high-power ultra-narrow linewidth special wavelength laser radiations.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFB2203103)the National Natural Science Foundation of China(Nos.62001086 and 61705033)。
文摘We demonstrate comprehensive investigation of the injection locking dynamics of a backscattered Brillouin laser in silica whispering-gallery-mode microcavity. Via injection locking, the Brillouin laser acquires highly correlated phase with the seed laser, enabling ultra-narrow bandwidth, high gain, and coherent optical amplification. Also, for the first time,to the best of our knowledge, the injection locked Brillouin laser is utilized to implement all-optical carrier recovery from coherent optical data signals. We show that by using the injection locked Brillouin laser as a local oscillator for self-homodyne detection, high-quality data receiving can be realized, even without traditional electrical compensations for carrier frequency and phase drifts.
基金the China Postdoctoral Science Foundation(No.2016M603003)State Key Laboratory of Luminescent Materials and Devices from South China University of Technology(No.2017-skllmd-09)
文摘The power scaling on mid-infrared Raman fibre lasers(RFLs) is in demand for applications in health, environment and security. In this paper, we present the simulated laser behaviours of the tellurite glass RFLs pumped by 300-W Tm-doped fibre lasers(TDFLs) at 2 μm for the first time. By combining the advantages of the TDFLs and tellurite fibre, the output power at 2.35 μm has reached over hundreds of watts by first-order Raman shift. Moreover, the cascaded RFLs have been demonstrated with a wavelength extension greater than 3 μm and output power of tens of watts. To maximize the output power and the slope efficiency of the RFLs, we further analyse the interaction between the Raman gain and cavity loss, which are determined by fibre length and output reflectance of the laser cavity.