In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numeri...In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numerical simulation using our non-distributed passively mode-locked Er-doped fiber laser model. For researching characteristics of these wave-breaking-free self-similar pulses, chirp of them must be extracted. We propose several time-frequency analysis methods adopted in chirp extraction of ultra-short optical pulses for the first time and discuss the advantages and disadvantages of them in this particular application.展开更多
A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked E...A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked Er-fiber lasers, and synchronized microwave and laser systems. We demonstrate that the BOMPD achieves a precision of synchronization of less than 100 femtosecond of timing jitter. The experimental setup can be applied to the soft X-ray free-electron laser located on the campus of the Shanghai synchrotron radiation facility. A microwave signal with a 2.856 GHz frequency is extracted from a238 MHz mode-locked Er-laser, with an absolute timing jitter of 34 fs in the 10 Hz–10 MHz frequency offset range.In addition, the microwave and 238 MHz optical pulse signals are synchronized with a relative timing jitter of16 fs at the same frequency offset range.展开更多
转镜调Q无插入损耗,是获得窄脉冲、高峰值功率输出激光的直接方式。纳秒脉冲需要使用高速转镜调Q,并精准控制电机转速与氙灯放电延时,以使激光介质上能级粒子数反转最大,获得最大激光能量输出。本文设计了以Arduino mega 2560单片机为...转镜调Q无插入损耗,是获得窄脉冲、高峰值功率输出激光的直接方式。纳秒脉冲需要使用高速转镜调Q,并精准控制电机转速与氙灯放电延时,以使激光介质上能级粒子数反转最大,获得最大激光能量输出。本文设计了以Arduino mega 2560单片机为核心的高速转镜调Q控制系统,通过精确单片机解析串口屏指令控制激光电源的充放电和高速电机启停,同时通过对转镜脉冲信号整合降频控制氙灯放电时刻,实现对延迟时间的精准控制,实现了灯泵Er,Cr:YSGG激光纳秒窄脉冲调Q输出。在5 Hz重复频率下,转镜转速为650 r/s时,获得的最高单脉冲激光能量为45.7 mJ、脉冲宽度为86.2 ns,相应的峰值功率为530.2 kW。展开更多
A 1.7-at.%Er:CaF_(2)crystal was synthesized by temperature gradient method.The Er:CaF_(2)crystal was applied in acousto-optically Q-switched laser at mid-infrared region for the first time.Using a Te O_(2)-based cryst...A 1.7-at.%Er:CaF_(2)crystal was synthesized by temperature gradient method.The Er:CaF_(2)crystal was applied in acousto-optically Q-switched laser at mid-infrared region for the first time.Using a Te O_(2)-based crystal as Q-switcher,we obtained a laser diode(LD)end-pumped Er:CaF_(2)laser with the highest single pulse energy up to 0.49 mJ and maximum peak power of 0.56 kW under 6.34-W absorbed pump power.The implication of these results is that the low-doped Er:CaF_(2)crystal exhibits promising optical properties in solid-state lasers.展开更多
A compact all-fiber polarization-maintaining Er:laser using a nonlinear amplifying loop mirror is reported. Fundamental single-pulse mode-locking operation can always self start, with a cavity round-trip decreased fro...A compact all-fiber polarization-maintaining Er:laser using a nonlinear amplifying loop mirror is reported. Fundamental single-pulse mode-locking operation can always self start, with a cavity round-trip decreased from ~ 4.7 m to~ 1.7 m. When the pulse repetition rate is 121.0328 MHz, output pulse is measured to have a center wavelength/3-d B spectral bandwidth/radio frequency signal to noise ratio(SNR)/pulse width of 1571.65 nm/18.70 nm/80 d B/477 fs, respectively. Besides, three states including the exponential growth, damping state, and steady state are investigated through the build-up process both experimentally and numerically. Excellent stability of this compact Er:laser is further evaluated,demonstrating that it can be an easy-fabrication maintenance-free ultrafast candidate for the scientific area of this kind.展开更多
Generation of noise-like rectangular pulse was investigated systematically in an Er–Yb co-doped fiber laser based on an intra-cavity coupler with different coupling ratios.When the coupling ratio was 5/95,stable mode...Generation of noise-like rectangular pulse was investigated systematically in an Er–Yb co-doped fiber laser based on an intra-cavity coupler with different coupling ratios.When the coupling ratio was 5/95,stable mode-locked pulses could be obtained with the pulse packet duration tunable from 4.86 ns to 80 ns.The repetition frequency was 1.186 MHz with the output spectrum centered at 1.6μm.The average output power and single pulse energy reached a record 1.43 W and1.21μJ,respectively.Pulse characteristics under different coupling ratios(5/95,10/90,20/80,30/70,40/60)were also presented and discussed.展开更多
44.6 fs pulses from a 257 MHz, mode-locked non-polarization maintaining Er-doped fiber laser based on a biased nonlinear amplifying loop mirror are reported. The output power is 104 mW and the single-pulse energy is 0...44.6 fs pulses from a 257 MHz, mode-locked non-polarization maintaining Er-doped fiber laser based on a biased nonlinear amplifying loop mirror are reported. The output power is 104 mW and the single-pulse energy is 0.4 nJ. The minimum pulse duration of the direct output is 44.6 fs, which is the shortest in this kind of laser.展开更多
In this paper, the characteristics of soliton in a passively mode-locked Er-doped fiber laser modeled by a non-distributed model are numerically investigated with the split-step Fourier method. Based on the analysis a...In this paper, the characteristics of soliton in a passively mode-locked Er-doped fiber laser modeled by a non-distributed model are numerically investigated with the split-step Fourier method. Based on the analysis and model, sech2-shaped soliton is obtained by controlling the group velocity dispersion (GVD) and small-signal gain of the gain fiber. The law that the dispersion influences the characteristics of soliton in the mode-locked fiber laser is researched in net-cavity averaged anomalous dispersion regime.展开更多
基金supported by National Natural Science Foundation of China and Scientific Forefront and Interdisciplinary Innovation Project, Jilin University under Grants No. 60372061,200903296
文摘In this paper, we adopt cloud computing in a specific scientific computing field for its virtualization, distribution and dynamic extendibility as follows: We obtain high-energy parabolic self-similar pulses by numerical simulation using our non-distributed passively mode-locked Er-doped fiber laser model. For researching characteristics of these wave-breaking-free self-similar pulses, chirp of them must be extracted. We propose several time-frequency analysis methods adopted in chirp extraction of ultra-short optical pulses for the first time and discuss the advantages and disadvantages of them in this particular application.
基金supported by the National Natural Science Foundation of China(No.11175241)
文摘A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked Er-fiber lasers, and synchronized microwave and laser systems. We demonstrate that the BOMPD achieves a precision of synchronization of less than 100 femtosecond of timing jitter. The experimental setup can be applied to the soft X-ray free-electron laser located on the campus of the Shanghai synchrotron radiation facility. A microwave signal with a 2.856 GHz frequency is extracted from a238 MHz mode-locked Er-laser, with an absolute timing jitter of 34 fs in the 10 Hz–10 MHz frequency offset range.In addition, the microwave and 238 MHz optical pulse signals are synchronized with a relative timing jitter of16 fs at the same frequency offset range.
基金the National Natural Science Foundation of China(Grant Nos.11974220,61925508,61905265,and 12104271)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2021LLZ008 and ZR2021QA030)+1 种基金the Fund from Science and Technology Commission of Shanghai Municipality(Grant No.20511107400)CAS Interdisciplinary Innovation Team(Grant No.JCTD-2019-12).
文摘A 1.7-at.%Er:CaF_(2)crystal was synthesized by temperature gradient method.The Er:CaF_(2)crystal was applied in acousto-optically Q-switched laser at mid-infrared region for the first time.Using a Te O_(2)-based crystal as Q-switcher,we obtained a laser diode(LD)end-pumped Er:CaF_(2)laser with the highest single pulse energy up to 0.49 mJ and maximum peak power of 0.56 kW under 6.34-W absorbed pump power.The implication of these results is that the low-doped Er:CaF_(2)crystal exhibits promising optical properties in solid-state lasers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61805282,11802339,and 11504420)the Opening Foundation of State Key Laboratory of High Performance Computing,China(Grant No.201601-02)+2 种基金the Open Research Fund of Hunan Provincial Key Laboratory of High Energy Technology,China(Grant No.GNJGJS03)the Opening Foundation of State Key Laboratory of Laser Interaction with Matter,China(Grant No.SKLLIM1702)the China Postdoctoral Innovation Science Foundation(Grant No.BX20180373)
文摘A compact all-fiber polarization-maintaining Er:laser using a nonlinear amplifying loop mirror is reported. Fundamental single-pulse mode-locking operation can always self start, with a cavity round-trip decreased from ~ 4.7 m to~ 1.7 m. When the pulse repetition rate is 121.0328 MHz, output pulse is measured to have a center wavelength/3-d B spectral bandwidth/radio frequency signal to noise ratio(SNR)/pulse width of 1571.65 nm/18.70 nm/80 d B/477 fs, respectively. Besides, three states including the exponential growth, damping state, and steady state are investigated through the build-up process both experimentally and numerically. Excellent stability of this compact Er:laser is further evaluated,demonstrating that it can be an easy-fabrication maintenance-free ultrafast candidate for the scientific area of this kind.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61435009,61235008,and 61405254)
文摘Generation of noise-like rectangular pulse was investigated systematically in an Er–Yb co-doped fiber laser based on an intra-cavity coupler with different coupling ratios.When the coupling ratio was 5/95,stable mode-locked pulses could be obtained with the pulse packet duration tunable from 4.86 ns to 80 ns.The repetition frequency was 1.186 MHz with the output spectrum centered at 1.6μm.The average output power and single pulse energy reached a record 1.43 W and1.21μJ,respectively.Pulse characteristics under different coupling ratios(5/95,10/90,20/80,30/70,40/60)were also presented and discussed.
基金supported in part by the National Natural Science Foundation of China(Nos.1162780027,31327901,and 61761136002)the Major National Basic Research Program of China(No.2013CB922401)the National Key Scientific Instrument and Equipment Development Program(No.2012YQ140005)
文摘44.6 fs pulses from a 257 MHz, mode-locked non-polarization maintaining Er-doped fiber laser based on a biased nonlinear amplifying loop mirror are reported. The output power is 104 mW and the single-pulse energy is 0.4 nJ. The minimum pulse duration of the direct output is 44.6 fs, which is the shortest in this kind of laser.
基金supported by the Natural Science Foundation of Jilin (201115027)the National Natural Science Foundation of China (61171079)
文摘In this paper, the characteristics of soliton in a passively mode-locked Er-doped fiber laser modeled by a non-distributed model are numerically investigated with the split-step Fourier method. Based on the analysis and model, sech2-shaped soliton is obtained by controlling the group velocity dispersion (GVD) and small-signal gain of the gain fiber. The law that the dispersion influences the characteristics of soliton in the mode-locked fiber laser is researched in net-cavity averaged anomalous dispersion regime.