Cr^(3+)-activated near-infrared(NIR)phosphors are key for NIR phosphor-converted light emitting diodes(NIR pc-LED).While,the site occupancy of Cr^(3+)is one of the debates that have plagued researchers.Herein,Y2Mg2Al2...Cr^(3+)-activated near-infrared(NIR)phosphors are key for NIR phosphor-converted light emitting diodes(NIR pc-LED).While,the site occupancy of Cr^(3+)is one of the debates that have plagued researchers.Herein,Y2Mg2Al2-Si_(2)O1_(2)(YMAS)with multiple cationic sites is chosen as host of Cr^(3+)to synthesize YMAS:xCr^(3+)phosphors.In YMAS,Cr^(3+)ions occupy simultaneously Al/SiO4 tetrahedral,Mg/AlO6 octahedral,and Y/MgO8 dodecahedral sites which form three luminescent centers named as Cr1,Cr2,and Cr3,respectively.Cr1 and Cr2 relate to an intermediate crystal field,with transitions of^(2)E→^(4)A_(2)and^(4)T_(2)→^(4)A_(2)occurring simultaneously.As Cr^(3+)concentration increases,the^(4)T_(2)→^(4)A_(2)transition becomes more pronounced in Cr1 and Cr2,resulting in a red-shift and broadband emission.Cr3 consistently behaves a weak crystal field and exhibits the broad and long-wavelength emission.Wide-range NIR emission centering at 745 nm is realized in YMAS:0.03Cr^(3+)phosphor.This phosphor has high internal quantum efficiency(IQE?86%)and satisfying luminescence thermal stability(I423 K?70.2%).Using this phosphor,NIR pc-LEDs with 56.6 mW@320 mA optical output power is packaged and applied.Present study not only demonstrates the Cr^(3+)multi-site occupancy in a certain oxide but also provides a reliable approach via choosing a host with diverse cationic sites and local environments for Cr^(3+)to achieve broadband NIR phosphors.展开更多
Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to st...Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.展开更多
Neurodegenerative diseases,such as Parkinson’s and Alzheimer’s diseases,affect the elderly worldwide and will become more prevalent as the global population ages.Neuroinflammation is a common characteristic of neuro...Neurodegenerative diseases,such as Parkinson’s and Alzheimer’s diseases,affect the elderly worldwide and will become more prevalent as the global population ages.Neuroinflammation is a common characteristic of neurodegenerative diseases.By regulating the phenotypes of microglia,it is possible to suppress neuroinflammation and,in turn,help prevent neurodegenerative diseases.We report a noninvasive photonic approach to regulating microglia from overexcited M1/M2 to the resting M0 phenotype using a special near-infrared(NIR)light emitted by the SrGa_(12)O_(19)∶Cr^(3t) phosphor.The absorbance and internal and external quantum efficiencies of the optimal SreGa_(0.99)Cr_(0.01)_(12)O_(19) phosphor synthesized at 1400℃ for 8 h using 1%H_(3)BO_(3) t 1%AlF3 as flux are 53.9%,99.2%,and 53.5%;the output power and energyconversion efficiency of the LED device packaged using the optimal SrGa_(12)O_(19): Cr^(3+) phosphor driven at 20 mA reach unprecedentedly 19.69 mW and 37.58%,respectively.The broadband emission of the NIR LED device covers the absorption peaks of cytochrome c oxidase well,and the NIR light can efficiently promote the proliferation of microglia,produce adenosine triphosphate(ATP),reverse overexcitation,alleviate and inhibit inflammation,and improve cell survival rate and activity,showing great prospects for photomedicine application.展开更多
基金supported by the National Natural Science Foundation of China(No.51772330)the Fundamental Research Funds for the Central Universities of Central South University(No.506021713)the National MCF Energy R&D Program of China(No.2018YFE0306100).
文摘Cr^(3+)-activated near-infrared(NIR)phosphors are key for NIR phosphor-converted light emitting diodes(NIR pc-LED).While,the site occupancy of Cr^(3+)is one of the debates that have plagued researchers.Herein,Y2Mg2Al2-Si_(2)O1_(2)(YMAS)with multiple cationic sites is chosen as host of Cr^(3+)to synthesize YMAS:xCr^(3+)phosphors.In YMAS,Cr^(3+)ions occupy simultaneously Al/SiO4 tetrahedral,Mg/AlO6 octahedral,and Y/MgO8 dodecahedral sites which form three luminescent centers named as Cr1,Cr2,and Cr3,respectively.Cr1 and Cr2 relate to an intermediate crystal field,with transitions of^(2)E→^(4)A_(2)and^(4)T_(2)→^(4)A_(2)occurring simultaneously.As Cr^(3+)concentration increases,the^(4)T_(2)→^(4)A_(2)transition becomes more pronounced in Cr1 and Cr2,resulting in a red-shift and broadband emission.Cr3 consistently behaves a weak crystal field and exhibits the broad and long-wavelength emission.Wide-range NIR emission centering at 745 nm is realized in YMAS:0.03Cr^(3+)phosphor.This phosphor has high internal quantum efficiency(IQE?86%)and satisfying luminescence thermal stability(I423 K?70.2%).Using this phosphor,NIR pc-LEDs with 56.6 mW@320 mA optical output power is packaged and applied.Present study not only demonstrates the Cr^(3+)multi-site occupancy in a certain oxide but also provides a reliable approach via choosing a host with diverse cationic sites and local environments for Cr^(3+)to achieve broadband NIR phosphors.
文摘Eu^(2+) and Mn^(2+) co-activated CaAlSiN_(3) red phosphors were produced using the solid-state reaction tech⁃nique in a N2 environment.Excitation spectra,emission spectra,and diffuse reflection spectra were used to study the luminescence characteristics,energy gap,and thermal stability in detail.CaAlSiN_(3)∶Eu^(2+) exhibits an extended emission band when stimulated with 450 nm blue light,which is caused by the 4f65d to 4f7 transition of Eu^(2+).Similar⁃ly,CaAlSiN_(3)∶Mn^(2+) displays a wide emission band centered at 628 nm,which results from Mn^(2+)’s transition from 4T1(4G) to 6A1(6S).When the ions of Mn^(2+)were combined into CaAlSiN_(3)∶Eu^(2+),the photoluminescence intensity of Eu^(2+ )was greatly boosted because there was energy transfer and co-emission between Mn^(2+) and Eu^(2+).Beyond that,CaAlSiN_(3)∶Eu^(2+),Mn^(2+) emerges with splendid thermostability and high quantum efficiency,the quenching temperature surpasses 300℃,and the internal quantum efficiency is determined to be around 84.9%.The white LED was pack⁃aged with a combination of CaAlSiN_(3)∶Eu^(2+),Mn^(2+),LuAG∶Ce3+ and a blue chip.At a warm white-light corresponding color temperature(3009 K) with CIE coordinates(0.4223,0.3748),the color rendering index Ra has reached 93.2.CaAlSiN_(3)∶Eu^(2+),Mn^(2+) would have great application potential as a red-emitting phosphor for white LEDs.
基金supported by the National Natural Science Foundation of China(Grant No.21875058)the Natural Science Foundation of Anhui Province(Grant No.2208085J13)+2 种基金the Major Science and Technology Project of Anhui Province(Grant No.202103a05020025)the Open Foundation of National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials of Henan University of Science and Technology(Grant No.HKDNM2019015)the Major Science and Technology Project of Zhongshan City of Guangdong Province on the Strategic Emerging Industries Technology Research Topic,China(Grant No.2022A1007).
文摘Neurodegenerative diseases,such as Parkinson’s and Alzheimer’s diseases,affect the elderly worldwide and will become more prevalent as the global population ages.Neuroinflammation is a common characteristic of neurodegenerative diseases.By regulating the phenotypes of microglia,it is possible to suppress neuroinflammation and,in turn,help prevent neurodegenerative diseases.We report a noninvasive photonic approach to regulating microglia from overexcited M1/M2 to the resting M0 phenotype using a special near-infrared(NIR)light emitted by the SrGa_(12)O_(19)∶Cr^(3t) phosphor.The absorbance and internal and external quantum efficiencies of the optimal SreGa_(0.99)Cr_(0.01)_(12)O_(19) phosphor synthesized at 1400℃ for 8 h using 1%H_(3)BO_(3) t 1%AlF3 as flux are 53.9%,99.2%,and 53.5%;the output power and energyconversion efficiency of the LED device packaged using the optimal SrGa_(12)O_(19): Cr^(3+) phosphor driven at 20 mA reach unprecedentedly 19.69 mW and 37.58%,respectively.The broadband emission of the NIR LED device covers the absorption peaks of cytochrome c oxidase well,and the NIR light can efficiently promote the proliferation of microglia,produce adenosine triphosphate(ATP),reverse overexcitation,alleviate and inhibit inflammation,and improve cell survival rate and activity,showing great prospects for photomedicine application.