This paper reports that the ultraviolet and visible upconversion luminescence from the ^4S3/2, ^2G9/2 and ^2P3/2 levels have been observed in Er^3+:YAG following 647.2 nm excitation of the ^4F9/2 multiple. Upconvers...This paper reports that the ultraviolet and visible upconversion luminescence from the ^4S3/2, ^2G9/2 and ^2P3/2 levels have been observed in Er^3+:YAG following 647.2 nm excitation of the ^4F9/2 multiple. Upconversion luminescence intensity dependence on pump power was recorded. The measured decay profiles were theoretically fitted by kinetics theory and the basically good agreements were achieved. The results indicate that some energy transfer processes proposed to explain the observed upconversion phenomena are reasonable.展开更多
The violet and green fluorescence spectra and the kinetics of fluorescence decay in Er^3+ :YAG crystal under 408.6 nm excitation were investigated by the time-resolved laser-induced fluorescence technique. The influ...The violet and green fluorescence spectra and the kinetics of fluorescence decay in Er^3+ :YAG crystal under 408.6 nm excitation were investigated by the time-resolved laser-induced fluorescence technique. The influence of multiphonon and energy transfer on the fluorescence decay of the ^4S3/2 rnultiplet were theoretically analyzed. A good agreement of the measured and the simulated decay curves was achieved. The continuous profile variety of the decay curves in the region from 548 to 561.2 nrn is found and it originates from the fluorescence overlap of ^2G9/2 and ^4S3/2 and the intensity ratio dominates the profile.展开更多
YAG: 1% (atom fraction) Yb^3+ , 0.5% (atom fraction) Er3+ transparent ceramics were fabricated by the solid state reaction method using high-purity Y2O3, Al2O3, Yb2O3, and Er2O3 powders as starting materials. T...YAG: 1% (atom fraction) Yb^3+ , 0.5% (atom fraction) Er3+ transparent ceramics were fabricated by the solid state reaction method using high-purity Y2O3, Al2O3, Yb2O3, and Er2O3 powders as starting materials. The mixed powder compact was sintered at 1760 ℃ for 6 h in vacuum and annealed at 1500 ℃ for 10 h in an air atmosphere. The ceramics consisted of about 10μm grains and exhibited a pore-free structure. The optical transmittance of the ceramics at 1064 nm was nearly 80%. Upconversion emissions were investigated on the ceramics pumped by a 980 nm continuous wave diode laser, and strong green emission centered at 523 and 559 nm and red emission centered at 669 nm were observed, which originated from the radiative transitions of ^2H11/2→^4I15/2, ^4S3/2→^4I15/2, and ^4F9/2→^4I15/2 of Er^3+ ions, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10074020).Acknowledgement The authors would like to thank Professor Siyuan Zhang for providing Er^3+:YAG crystal.
文摘This paper reports that the ultraviolet and visible upconversion luminescence from the ^4S3/2, ^2G9/2 and ^2P3/2 levels have been observed in Er^3+:YAG following 647.2 nm excitation of the ^4F9/2 multiple. Upconversion luminescence intensity dependence on pump power was recorded. The measured decay profiles were theoretically fitted by kinetics theory and the basically good agreements were achieved. The results indicate that some energy transfer processes proposed to explain the observed upconversion phenomena are reasonable.
基金Project supported bythe National Natural Science Foundation of China (10074020)
文摘The violet and green fluorescence spectra and the kinetics of fluorescence decay in Er^3+ :YAG crystal under 408.6 nm excitation were investigated by the time-resolved laser-induced fluorescence technique. The influence of multiphonon and energy transfer on the fluorescence decay of the ^4S3/2 rnultiplet were theoretically analyzed. A good agreement of the measured and the simulated decay curves was achieved. The continuous profile variety of the decay curves in the region from 548 to 561.2 nrn is found and it originates from the fluorescence overlap of ^2G9/2 and ^4S3/2 and the intensity ratio dominates the profile.
基金Project supported bythe National Natural Science Foundation of China (50372075)
文摘YAG: 1% (atom fraction) Yb^3+ , 0.5% (atom fraction) Er3+ transparent ceramics were fabricated by the solid state reaction method using high-purity Y2O3, Al2O3, Yb2O3, and Er2O3 powders as starting materials. The mixed powder compact was sintered at 1760 ℃ for 6 h in vacuum and annealed at 1500 ℃ for 10 h in an air atmosphere. The ceramics consisted of about 10μm grains and exhibited a pore-free structure. The optical transmittance of the ceramics at 1064 nm was nearly 80%. Upconversion emissions were investigated on the ceramics pumped by a 980 nm continuous wave diode laser, and strong green emission centered at 523 and 559 nm and red emission centered at 669 nm were observed, which originated from the radiative transitions of ^2H11/2→^4I15/2, ^4S3/2→^4I15/2, and ^4F9/2→^4I15/2 of Er^3+ ions, respectively.