Er3 +/Yb3 +-codoped oxyfluoride crystallite glass was prepared with melting technique. The compositions and the melting temperature and the annealing temperature of the rare earth-doped crystallite glass were studied ...Er3 +/Yb3 +-codoped oxyfluoride crystallite glass was prepared with melting technique. The compositions and the melting temperature and the annealing temperature of the rare earth-doped crystallite glass were studied in detail. The emission spectra of samples were measured with the Hitachi F-4500 fluorescent photometer pumped by 980 nm wavelength laser. The up-conversion luminescence mechanism was illuminated on the view of the photophysics. By measuring the relationship between luminescent intensity and pump power, it is confirmed that the emission peaks at 550 nm belong to two-photon process, while that at 665 nm belongs to three-photon process. Moreover, the distributions of crystalline were determined by SEM.展开更多
Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence c...Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and near infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm^3+: ^1D2 →^3F4, ^1G4 →^3H6, ^1G4 →^3F4, and ^3H4 →^3H6, respectively, are observed. Due to the sensitization of Yb^3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb^3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.展开更多
文摘Er3 +/Yb3 +-codoped oxyfluoride crystallite glass was prepared with melting technique. The compositions and the melting temperature and the annealing temperature of the rare earth-doped crystallite glass were studied in detail. The emission spectra of samples were measured with the Hitachi F-4500 fluorescent photometer pumped by 980 nm wavelength laser. The up-conversion luminescence mechanism was illuminated on the view of the photophysics. By measuring the relationship between luminescent intensity and pump power, it is confirmed that the emission peaks at 550 nm belong to two-photon process, while that at 665 nm belongs to three-photon process. Moreover, the distributions of crystalline were determined by SEM.
基金Project supported by the Shanghai "Post-Qi-Ming-Xing plan" for Young Scientists, China (Grant No 04QMX1448) and the National Natural Science Foundation of China (Grant No 60207006).The author would like to thank Wen L,Shen Y H and Zhao Y for their help in machining and measuring.
文摘Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and near infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm^3+: ^1D2 →^3F4, ^1G4 →^3H6, ^1G4 →^3F4, and ^3H4 →^3H6, respectively, are observed. Due to the sensitization of Yb^3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb^3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.